Loading…
Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double- β decay: Ridge regression for nuclei with axial deformation
The generator coordinate method (GCM) is an important tool of choice for modeling large-amplitude collective motion in atomic nuclei. The computational complexity of the GCM increases rapidly with the number of collective coordinates. It imposes a strong restriction on the applicability of the metho...
Saved in:
Published in: | Physical review. C 2023-02, Vol.107 (2), Article 024304 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c276t-a5e65e9344cfa2b2f2570edaf3da20538b177de23e08c738b858f2f5e7ca5c7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c276t-a5e65e9344cfa2b2f2570edaf3da20538b177de23e08c738b858f2f5e7ca5c7a3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Physical review. C |
container_volume | 107 |
creator | Zhang, X. Lin, W. Yao, J. M. Jiao, C. F. Romero, A. M. Rodríguez, T. R. Hergert, H. |
description | The generator coordinate method (GCM) is an important tool of choice for modeling large-amplitude collective motion in atomic nuclei. The computational complexity of the GCM increases rapidly with the number of collective coordinates. It imposes a strong restriction on the applicability of the method. In this work, we propose a subspace-reduction algorithm that employs optimal statistical ML models as surrogates for exact quantum-number projection calculations for norm and Hamiltonian kernels. The model space of the original GCM is reduced to a subspace relevant for nuclear low energy spectra and the NME of ground state to ground state 0νββ decay based on the orthogonality condition (OC) and the energy-transition-orthogonality procedure (ENTROP), respectively. For simplicity, the polynomial ridge regression (RR) algorithm is used to learn the norm and Hamiltonian kernels of axially deformed configurations. The efficiency and accuracy of this algorithm are illustrated for 76Ge and 76Se by comparing results obtained using the optimal RR models to direct GCM calculations. The low-lying energy spectra of 76Ge and 76Se, as well as the 0νββ-decay NME between their ground states, are computed. Furthermore, the results show that the performance of the GCM+OC/ENTROP+RR is more robust than that of the GCM+RR alone, and the former can reproduce the results of the original GCM calculation accurately with a significantly reduced computational cost. |
doi_str_mv | 10.1103/PhysRevC.107.024304 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1962723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_107_024304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-a5e65e9344cfa2b2f2570edaf3da20538b177de23e08c738b858f2f5e7ca5c7a3</originalsourceid><addsrcrecordid>eNo9UU1P3DAQjaoiFQG_gMuo92z9kcRJb9WKlkpIINSeo1l7vHGV2IvtpV1-Fsf-CH4TWRY4zcybN29m9IrinLMF50x-uRl26ZbulwvO1IKJSrLqQ3EsqqYru66TH9_ztv5UnKX0hzHGG9Ypzo6L_9eb7Cb3gNkFD8FCHgjW5CliDhF0CNE4j5lgojwEA39dHmBCPThP5UgYvfNryKQH7-62lMDOY36r9y1IG9I5IqA34Gmbo_NhpJTAhO1qpBKeHsGQxt1XuHVmTRBpHef-_pZ3HXfYif8cjjN7xqeXa0-LI4tjorPXeFL8_n7xa3lZXl3_-Ln8dlVqoZpcYk1NTZ2sKm1RrIQVtWJk0EqDgtWyXXGlDAlJrNVqLtu6tcLWpDTWWqE8KT4fdEPKrk_a7Z_Vwfv5t553jVBCziR5IOkYUopk-010E8Zdz1m_t6l_s2kGVH-wST4DB7COYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double- β decay: Ridge regression for nuclei with axial deformation</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Zhang, X. ; Lin, W. ; Yao, J. M. ; Jiao, C. F. ; Romero, A. M. ; Rodríguez, T. R. ; Hergert, H.</creator><creatorcontrib>Zhang, X. ; Lin, W. ; Yao, J. M. ; Jiao, C. F. ; Romero, A. M. ; Rodríguez, T. R. ; Hergert, H. ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>The generator coordinate method (GCM) is an important tool of choice for modeling large-amplitude collective motion in atomic nuclei. The computational complexity of the GCM increases rapidly with the number of collective coordinates. It imposes a strong restriction on the applicability of the method. In this work, we propose a subspace-reduction algorithm that employs optimal statistical ML models as surrogates for exact quantum-number projection calculations for norm and Hamiltonian kernels. The model space of the original GCM is reduced to a subspace relevant for nuclear low energy spectra and the NME of ground state to ground state 0νββ decay based on the orthogonality condition (OC) and the energy-transition-orthogonality procedure (ENTROP), respectively. For simplicity, the polynomial ridge regression (RR) algorithm is used to learn the norm and Hamiltonian kernels of axially deformed configurations. The efficiency and accuracy of this algorithm are illustrated for 76Ge and 76Se by comparing results obtained using the optimal RR models to direct GCM calculations. The low-lying energy spectra of 76Ge and 76Se, as well as the 0νββ-decay NME between their ground states, are computed. Furthermore, the results show that the performance of the GCM+OC/ENTROP+RR is more robust than that of the GCM+RR alone, and the former can reproduce the results of the original GCM calculation accurately with a significantly reduced computational cost.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.107.024304</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>A ≤ 89 ; Electroweak interactions in nuclear physics ; Machine learning ; Neutrinoless double beta decay ; Nuclear many-body theory ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Nuclear structure & decays</subject><ispartof>Physical review. C, 2023-02, Vol.107 (2), Article 024304</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-a5e65e9344cfa2b2f2570edaf3da20538b177de23e08c738b858f2f5e7ca5c7a3</citedby><cites>FETCH-LOGICAL-c276t-a5e65e9344cfa2b2f2570edaf3da20538b177de23e08c738b858f2f5e7ca5c7a3</cites><orcidid>0000-0002-3516-8239 ; 0000-0002-5292-5158 ; 0000-0001-9505-1852 ; 0000000195051852 ; 0000000235168239 ; 0000000305200856 ; 0000000252925158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1962723$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Lin, W.</creatorcontrib><creatorcontrib>Yao, J. M.</creatorcontrib><creatorcontrib>Jiao, C. F.</creatorcontrib><creatorcontrib>Romero, A. M.</creatorcontrib><creatorcontrib>Rodríguez, T. R.</creatorcontrib><creatorcontrib>Hergert, H.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double- β decay: Ridge regression for nuclei with axial deformation</title><title>Physical review. C</title><description>The generator coordinate method (GCM) is an important tool of choice for modeling large-amplitude collective motion in atomic nuclei. The computational complexity of the GCM increases rapidly with the number of collective coordinates. It imposes a strong restriction on the applicability of the method. In this work, we propose a subspace-reduction algorithm that employs optimal statistical ML models as surrogates for exact quantum-number projection calculations for norm and Hamiltonian kernels. The model space of the original GCM is reduced to a subspace relevant for nuclear low energy spectra and the NME of ground state to ground state 0νββ decay based on the orthogonality condition (OC) and the energy-transition-orthogonality procedure (ENTROP), respectively. For simplicity, the polynomial ridge regression (RR) algorithm is used to learn the norm and Hamiltonian kernels of axially deformed configurations. The efficiency and accuracy of this algorithm are illustrated for 76Ge and 76Se by comparing results obtained using the optimal RR models to direct GCM calculations. The low-lying energy spectra of 76Ge and 76Se, as well as the 0νββ-decay NME between their ground states, are computed. Furthermore, the results show that the performance of the GCM+OC/ENTROP+RR is more robust than that of the GCM+RR alone, and the former can reproduce the results of the original GCM calculation accurately with a significantly reduced computational cost.</description><subject>A ≤ 89</subject><subject>Electroweak interactions in nuclear physics</subject><subject>Machine learning</subject><subject>Neutrinoless double beta decay</subject><subject>Nuclear many-body theory</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Nuclear structure & decays</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UU1P3DAQjaoiFQG_gMuo92z9kcRJb9WKlkpIINSeo1l7vHGV2IvtpV1-Fsf-CH4TWRY4zcybN29m9IrinLMF50x-uRl26ZbulwvO1IKJSrLqQ3EsqqYru66TH9_ztv5UnKX0hzHGG9Ypzo6L_9eb7Cb3gNkFD8FCHgjW5CliDhF0CNE4j5lgojwEA39dHmBCPThP5UgYvfNryKQH7-62lMDOY36r9y1IG9I5IqA34Gmbo_NhpJTAhO1qpBKeHsGQxt1XuHVmTRBpHef-_pZ3HXfYif8cjjN7xqeXa0-LI4tjorPXeFL8_n7xa3lZXl3_-Ln8dlVqoZpcYk1NTZ2sKm1RrIQVtWJk0EqDgtWyXXGlDAlJrNVqLtu6tcLWpDTWWqE8KT4fdEPKrk_a7Z_Vwfv5t553jVBCziR5IOkYUopk-010E8Zdz1m_t6l_s2kGVH-wST4DB7COYQ</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Zhang, X.</creator><creator>Lin, W.</creator><creator>Yao, J. M.</creator><creator>Jiao, C. F.</creator><creator>Romero, A. M.</creator><creator>Rodríguez, T. R.</creator><creator>Hergert, H.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3516-8239</orcidid><orcidid>https://orcid.org/0000-0002-5292-5158</orcidid><orcidid>https://orcid.org/0000-0001-9505-1852</orcidid><orcidid>https://orcid.org/0000000195051852</orcidid><orcidid>https://orcid.org/0000000235168239</orcidid><orcidid>https://orcid.org/0000000305200856</orcidid><orcidid>https://orcid.org/0000000252925158</orcidid></search><sort><creationdate>20230208</creationdate><title>Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double- β decay: Ridge regression for nuclei with axial deformation</title><author>Zhang, X. ; Lin, W. ; Yao, J. M. ; Jiao, C. F. ; Romero, A. M. ; Rodríguez, T. R. ; Hergert, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-a5e65e9344cfa2b2f2570edaf3da20538b177de23e08c738b858f2f5e7ca5c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A ≤ 89</topic><topic>Electroweak interactions in nuclear physics</topic><topic>Machine learning</topic><topic>Neutrinoless double beta decay</topic><topic>Nuclear many-body theory</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Nuclear structure & decays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Lin, W.</creatorcontrib><creatorcontrib>Yao, J. M.</creatorcontrib><creatorcontrib>Jiao, C. F.</creatorcontrib><creatorcontrib>Romero, A. M.</creatorcontrib><creatorcontrib>Rodríguez, T. R.</creatorcontrib><creatorcontrib>Hergert, H.</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, X.</au><au>Lin, W.</au><au>Yao, J. M.</au><au>Jiao, C. F.</au><au>Romero, A. M.</au><au>Rodríguez, T. R.</au><au>Hergert, H.</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double- β decay: Ridge regression for nuclei with axial deformation</atitle><jtitle>Physical review. C</jtitle><date>2023-02-08</date><risdate>2023</risdate><volume>107</volume><issue>2</issue><artnum>024304</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>The generator coordinate method (GCM) is an important tool of choice for modeling large-amplitude collective motion in atomic nuclei. The computational complexity of the GCM increases rapidly with the number of collective coordinates. It imposes a strong restriction on the applicability of the method. In this work, we propose a subspace-reduction algorithm that employs optimal statistical ML models as surrogates for exact quantum-number projection calculations for norm and Hamiltonian kernels. The model space of the original GCM is reduced to a subspace relevant for nuclear low energy spectra and the NME of ground state to ground state 0νββ decay based on the orthogonality condition (OC) and the energy-transition-orthogonality procedure (ENTROP), respectively. For simplicity, the polynomial ridge regression (RR) algorithm is used to learn the norm and Hamiltonian kernels of axially deformed configurations. The efficiency and accuracy of this algorithm are illustrated for 76Ge and 76Se by comparing results obtained using the optimal RR models to direct GCM calculations. The low-lying energy spectra of 76Ge and 76Se, as well as the 0νββ-decay NME between their ground states, are computed. Furthermore, the results show that the performance of the GCM+OC/ENTROP+RR is more robust than that of the GCM+RR alone, and the former can reproduce the results of the original GCM calculation accurately with a significantly reduced computational cost.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.107.024304</doi><orcidid>https://orcid.org/0000-0002-3516-8239</orcidid><orcidid>https://orcid.org/0000-0002-5292-5158</orcidid><orcidid>https://orcid.org/0000-0001-9505-1852</orcidid><orcidid>https://orcid.org/0000000195051852</orcidid><orcidid>https://orcid.org/0000000235168239</orcidid><orcidid>https://orcid.org/0000000305200856</orcidid><orcidid>https://orcid.org/0000000252925158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9985 |
ispartof | Physical review. C, 2023-02, Vol.107 (2), Article 024304 |
issn | 2469-9985 2469-9993 |
language | eng |
recordid | cdi_osti_scitechconnect_1962723 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | A ≤ 89 Electroweak interactions in nuclear physics Machine learning Neutrinoless double beta decay Nuclear many-body theory NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear structure & decays |
title | Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double- β decay: Ridge regression for nuclei with axial deformation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20generator%20coordinate%20method%20with%20machine-learning%20techniques%20for%20nuclear%20spectra%20and%20neutrinoless%20double-%20%CE%B2%20decay:%20Ridge%20regression%20for%20nuclei%20with%20axial%20deformation&rft.jtitle=Physical%20review.%20C&rft.au=Zhang,%20X.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2023-02-08&rft.volume=107&rft.issue=2&rft.artnum=024304&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.107.024304&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_107_024304%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-a5e65e9344cfa2b2f2570edaf3da20538b177de23e08c738b858f2f5e7ca5c7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |