Loading…

Lithium Metal Anodes with Nonaqueous Electrolytes

High-energy rechargeable lithium (Li) metal batteries (LMBs) with Li metal anode (LMA) were first developed in the 1970s, but their practical applications have been hindered by the safety and low-efficiency concerns related to LMA. Recently, a worldwide effort on LMA-based rechargeable LMBs has been...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews 2020-12, Vol.120 (24), p.13312-13348
Main Authors: Zhang, Ji-Guang, Xu, Wu, Xiao, Jie, Cao, Xia, Liu, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-energy rechargeable lithium (Li) metal batteries (LMBs) with Li metal anode (LMA) were first developed in the 1970s, but their practical applications have been hindered by the safety and low-efficiency concerns related to LMA. Recently, a worldwide effort on LMA-based rechargeable LMBs has been revived to replace graphite-based, Li-ion batteries because of the much higher energy density that can be achieved with LMBs. This review focuses on the recent progress on the stabilization of LMA with nonaqueous electrolytes and reveals the fundamental mechanisms behind this improved stability. Various strategies that can enhance the stability of LMA in practical conditions and perspectives on the future development of LMA are also discussed. These strategies include the use of novel electrolytes such as superconcentrated electrolytes, localized high-concentration electrolytes, and highly fluorinated electrolytes, surface coatings that can form a solid electrolyte interphase with a high interfacial energy and self-healing capabilities, development of “anode-free” Li batteries to minimize the interaction between LMA and electrolyte, approaches to enable operation of LMA in practical conditions, etc. Combination of these strategies ultimately will lead us closer to the large-scale application of LMBs which often is called the “Holy Grail” of energy storage systems.
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.0c00275