Loading…

Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics

Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films,...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2021-12, Vol.15 (12)
Main Authors: Wieliczka, Brian M., Márquez, José A., Bothwell, Alexandra M., Zhao, Qian, Moot, Taylor, VanSant, Kaitlyn T., Ferguson, Andrew J., Unold, Thomas, Kuciauskas, Darius, Luther, Joseph M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title ACS nano
container_volume 15
creator Wieliczka, Brian M.
Márquez, José A.
Bothwell, Alexandra M.
Zhao, Qian
Moot, Taylor
VanSant, Kaitlyn T.
Ferguson, Andrew J.
Unold, Thomas
Kuciauskas, Darius
Luther, Joseph M.
description Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (VOC) in comparison. Further understanding of the VOC attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the VOC in CsPbI3 PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the VOC and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs+ with FA+ maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the VOC deficit. Furthermore, these results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer.
doi_str_mv 10.1021/acsnano.1c05642
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1972234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972234</sourcerecordid><originalsourceid>FETCH-LOGICAL-o631-8884fce40c6c30f6382aead57a9ae2a74ee0a6f82885d8863da25377e66c21653</originalsourceid><addsrcrecordid>eNo9jstLw0AYxBdRsFbPXhfvqfvIPnKU-IRCI5TirXxuviSrdVeym_79ViqeZobfMAwh15wtOBP8FlwKEOKCO6Z0KU7IjFdSF8zqt9N_r_g5uUjpgzFlrNEzsmnG-O5DT_OAdDX63gcau2P6xkBrP7rJZ7qJuww90gNucIz79Okz0tcJQp6-6H3MtBlijvvfmnfpkpx1sEt49adzsn58WNfPxXL19FLfLYuoJS-stWXnsGROO8k6La0AhFYZqAAFmBKRge6ssFa11mrZglDSGNTaCa6VnJOb42xM2W-TO3xyg4shoMtbXhkhZCl_AHnuU_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wieliczka, Brian M. ; Márquez, José A. ; Bothwell, Alexandra M. ; Zhao, Qian ; Moot, Taylor ; VanSant, Kaitlyn T. ; Ferguson, Andrew J. ; Unold, Thomas ; Kuciauskas, Darius ; Luther, Joseph M.</creator><creatorcontrib>Wieliczka, Brian M. ; Márquez, José A. ; Bothwell, Alexandra M. ; Zhao, Qian ; Moot, Taylor ; VanSant, Kaitlyn T. ; Ferguson, Andrew J. ; Unold, Thomas ; Kuciauskas, Darius ; Luther, Joseph M. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (VOC) in comparison. Further understanding of the VOC attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the VOC in CsPbI3 PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the VOC and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs+ with FA+ maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the VOC deficit. Furthermore, these results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c05642</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electronic traps ; MATERIALS SCIENCE ; open circuit voltage ; perovskite quantum dot ; quasi-Fermi level splitting ; solar cell ; SOLAR ENERGY ; time-resolved photoluminescence</subject><ispartof>ACS nano, 2021-12, Vol.15 (12)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000023528634X ; 0000000164374157 ; 0000000325441753 ; 0000000257500693 ; 0000000217344390 ; 0000000169393568 ; 0000000281732566 ; 0000000240548244 ; 0000000170384335 ; 0000000180915718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1972234$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wieliczka, Brian M.</creatorcontrib><creatorcontrib>Márquez, José A.</creatorcontrib><creatorcontrib>Bothwell, Alexandra M.</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Moot, Taylor</creatorcontrib><creatorcontrib>VanSant, Kaitlyn T.</creatorcontrib><creatorcontrib>Ferguson, Andrew J.</creatorcontrib><creatorcontrib>Unold, Thomas</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>Luther, Joseph M.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics</title><title>ACS nano</title><description>Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (VOC) in comparison. Further understanding of the VOC attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the VOC in CsPbI3 PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the VOC and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs+ with FA+ maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the VOC deficit. Furthermore, these results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer.</description><subject>electronic traps</subject><subject>MATERIALS SCIENCE</subject><subject>open circuit voltage</subject><subject>perovskite quantum dot</subject><subject>quasi-Fermi level splitting</subject><subject>solar cell</subject><subject>SOLAR ENERGY</subject><subject>time-resolved photoluminescence</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jstLw0AYxBdRsFbPXhfvqfvIPnKU-IRCI5TirXxuviSrdVeym_79ViqeZobfMAwh15wtOBP8FlwKEOKCO6Z0KU7IjFdSF8zqt9N_r_g5uUjpgzFlrNEzsmnG-O5DT_OAdDX63gcau2P6xkBrP7rJZ7qJuww90gNucIz79Okz0tcJQp6-6H3MtBlijvvfmnfpkpx1sEt49adzsn58WNfPxXL19FLfLYuoJS-stWXnsGROO8k6La0AhFYZqAAFmBKRge6ssFa11mrZglDSGNTaCa6VnJOb42xM2W-TO3xyg4shoMtbXhkhZCl_AHnuU_M</recordid><startdate>20211228</startdate><enddate>20211228</enddate><creator>Wieliczka, Brian M.</creator><creator>Márquez, José A.</creator><creator>Bothwell, Alexandra M.</creator><creator>Zhao, Qian</creator><creator>Moot, Taylor</creator><creator>VanSant, Kaitlyn T.</creator><creator>Ferguson, Andrew J.</creator><creator>Unold, Thomas</creator><creator>Kuciauskas, Darius</creator><creator>Luther, Joseph M.</creator><general>American Chemical Society</general><scope>OTOTI</scope><orcidid>https://orcid.org/000000023528634X</orcidid><orcidid>https://orcid.org/0000000164374157</orcidid><orcidid>https://orcid.org/0000000325441753</orcidid><orcidid>https://orcid.org/0000000257500693</orcidid><orcidid>https://orcid.org/0000000217344390</orcidid><orcidid>https://orcid.org/0000000169393568</orcidid><orcidid>https://orcid.org/0000000281732566</orcidid><orcidid>https://orcid.org/0000000240548244</orcidid><orcidid>https://orcid.org/0000000170384335</orcidid><orcidid>https://orcid.org/0000000180915718</orcidid></search><sort><creationdate>20211228</creationdate><title>Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics</title><author>Wieliczka, Brian M. ; Márquez, José A. ; Bothwell, Alexandra M. ; Zhao, Qian ; Moot, Taylor ; VanSant, Kaitlyn T. ; Ferguson, Andrew J. ; Unold, Thomas ; Kuciauskas, Darius ; Luther, Joseph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o631-8884fce40c6c30f6382aead57a9ae2a74ee0a6f82885d8863da25377e66c21653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>electronic traps</topic><topic>MATERIALS SCIENCE</topic><topic>open circuit voltage</topic><topic>perovskite quantum dot</topic><topic>quasi-Fermi level splitting</topic><topic>solar cell</topic><topic>SOLAR ENERGY</topic><topic>time-resolved photoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wieliczka, Brian M.</creatorcontrib><creatorcontrib>Márquez, José A.</creatorcontrib><creatorcontrib>Bothwell, Alexandra M.</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Moot, Taylor</creatorcontrib><creatorcontrib>VanSant, Kaitlyn T.</creatorcontrib><creatorcontrib>Ferguson, Andrew J.</creatorcontrib><creatorcontrib>Unold, Thomas</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>Luther, Joseph M.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wieliczka, Brian M.</au><au>Márquez, José A.</au><au>Bothwell, Alexandra M.</au><au>Zhao, Qian</au><au>Moot, Taylor</au><au>VanSant, Kaitlyn T.</au><au>Ferguson, Andrew J.</au><au>Unold, Thomas</au><au>Kuciauskas, Darius</au><au>Luther, Joseph M.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics</atitle><jtitle>ACS nano</jtitle><date>2021-12-28</date><risdate>2021</risdate><volume>15</volume><issue>12</issue><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (VOC) in comparison. Further understanding of the VOC attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the VOC in CsPbI3 PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the VOC and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs+ with FA+ maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the VOC deficit. Furthermore, these results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsnano.1c05642</doi><orcidid>https://orcid.org/000000023528634X</orcidid><orcidid>https://orcid.org/0000000164374157</orcidid><orcidid>https://orcid.org/0000000325441753</orcidid><orcidid>https://orcid.org/0000000257500693</orcidid><orcidid>https://orcid.org/0000000217344390</orcidid><orcidid>https://orcid.org/0000000169393568</orcidid><orcidid>https://orcid.org/0000000281732566</orcidid><orcidid>https://orcid.org/0000000240548244</orcidid><orcidid>https://orcid.org/0000000170384335</orcidid><orcidid>https://orcid.org/0000000180915718</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-12, Vol.15 (12)
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1972234
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects electronic traps
MATERIALS SCIENCE
open circuit voltage
perovskite quantum dot
quasi-Fermi level splitting
solar cell
SOLAR ENERGY
time-resolved photoluminescence
title Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Origin%20of%20the%20Open%20Circuit%20Voltage%20in%20Perovskite%20Quantum%20Dot%20Photovoltaics&rft.jtitle=ACS%20nano&rft.au=Wieliczka,%20Brian%20M.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2021-12-28&rft.volume=15&rft.issue=12&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c05642&rft_dat=%3Costi%3E1972234%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o631-8884fce40c6c30f6382aead57a9ae2a74ee0a6f82885d8863da25377e66c21653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true