Loading…

Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells

Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phase...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2023-03, Vol.8 (3), p.1408-1415
Main Authors: Perini, Carlo A. R., Castro-Mendez, Andres-Felipe, Kodalle, Tim, Ravello, Magdalena, Hidalgo, Juanita, Gomez-Dominguez, Martin, Li, Ruipeng, Taddei, Margherita, Giridharagopal, Rajiv, Pothoof, Justin, Sutter-Fella, Carolin M., Ginger, David S., Correa-Baena, Juan-Pablo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143
cites cdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143
container_end_page 1415
container_issue 3
container_start_page 1408
container_title ACS energy letters
container_volume 8
creator Perini, Carlo A. R.
Castro-Mendez, Andres-Felipe
Kodalle, Tim
Ravello, Magdalena
Hidalgo, Juanita
Gomez-Dominguez, Martin
Li, Ruipeng
Taddei, Margherita
Giridharagopal, Rajiv
Pothoof, Justin
Sutter-Fella, Carolin M.
Ginger, David S.
Correa-Baena, Juan-Pablo
description Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies.
doi_str_mv 10.1021/acsenergylett.2c02419
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1972949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c53073566</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</originalsourceid><addsrcrecordid>eNqFUE1LAzEUXETBUvsThOB9a5L9zMFDWasWCooWr0uavG23rsnykoq9-R_8h_4SI-1BT_IO78GbGWYmis4ZHTPK2aVUDgzgateB92OuKE-ZOIoGPClpXDKRHf-6T6ORcxtKKcvLLMwgwmfZW4yvobeu9aCJIVeEk8et1h04Debr4_PB9j0gmRkP2EgFZC53gI5MWk2qtcQVkEoitgEzffcolW-tIa0hD4D2zb0EXfJkO4mkgq5zZ9FJIzsHo8MeRoub6aK6i-f3t7NqMo9lkgsfN5IvhdJ5IRJaspTniRJNumSaS0WLVAf7NKNABUgBXDepTFSeZgWVeZazNBlGF3tZ63xbOxVcqLWyxoDyNRMFF6kIoGwPUmidQ2jqHttXibua0fqn3_pPv_Wh38Bje1541xu7RROS_MP5BjC9hIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Perini, Carlo A. R. ; Castro-Mendez, Andres-Felipe ; Kodalle, Tim ; Ravello, Magdalena ; Hidalgo, Juanita ; Gomez-Dominguez, Martin ; Li, Ruipeng ; Taddei, Margherita ; Giridharagopal, Rajiv ; Pothoof, Justin ; Sutter-Fella, Carolin M. ; Ginger, David S. ; Correa-Baena, Juan-Pablo</creator><creatorcontrib>Perini, Carlo A. R. ; Castro-Mendez, Andres-Felipe ; Kodalle, Tim ; Ravello, Magdalena ; Hidalgo, Juanita ; Gomez-Dominguez, Martin ; Li, Ruipeng ; Taddei, Margherita ; Giridharagopal, Rajiv ; Pothoof, Justin ; Sutter-Fella, Carolin M. ; Ginger, David S. ; Correa-Baena, Juan-Pablo ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><description>Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.2c02419</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>annealing (metallurgy) ; cations ; deposition ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; interfaces ; layers</subject><ispartof>ACS energy letters, 2023-03, Vol.8 (3), p.1408-1415</ispartof><rights>2023 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</citedby><cites>FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</cites><orcidid>0000-0001-6076-852X ; 0000-0002-3860-1149 ; 0000-0002-7769-0869 ; 0000-0003-4122-8418 ; 0000-0002-8765-0772 ; 0000-0002-2613-0706 ; 0000-0002-9759-5447 ; 0000000341228418 ; 0000000226130706 ; 0000000287650772 ; 000000016076852X ; 0000000277690869 ; 0000000238601149 ; 0000000297595447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1972949$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perini, Carlo A. R.</creatorcontrib><creatorcontrib>Castro-Mendez, Andres-Felipe</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Ravello, Magdalena</creatorcontrib><creatorcontrib>Hidalgo, Juanita</creatorcontrib><creatorcontrib>Gomez-Dominguez, Martin</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Taddei, Margherita</creatorcontrib><creatorcontrib>Giridharagopal, Rajiv</creatorcontrib><creatorcontrib>Pothoof, Justin</creatorcontrib><creatorcontrib>Sutter-Fella, Carolin M.</creatorcontrib><creatorcontrib>Ginger, David S.</creatorcontrib><creatorcontrib>Correa-Baena, Juan-Pablo</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><title>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies.</description><subject>annealing (metallurgy)</subject><subject>cations</subject><subject>deposition</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>interfaces</subject><subject>layers</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUXETBUvsThOB9a5L9zMFDWasWCooWr0uavG23rsnykoq9-R_8h_4SI-1BT_IO78GbGWYmis4ZHTPK2aVUDgzgateB92OuKE-ZOIoGPClpXDKRHf-6T6ORcxtKKcvLLMwgwmfZW4yvobeu9aCJIVeEk8et1h04Debr4_PB9j0gmRkP2EgFZC53gI5MWk2qtcQVkEoitgEzffcolW-tIa0hD4D2zb0EXfJkO4mkgq5zZ9FJIzsHo8MeRoub6aK6i-f3t7NqMo9lkgsfN5IvhdJ5IRJaspTniRJNumSaS0WLVAf7NKNABUgBXDepTFSeZgWVeZazNBlGF3tZ63xbOxVcqLWyxoDyNRMFF6kIoGwPUmidQ2jqHttXibua0fqn3_pPv_Wh38Bje1541xu7RROS_MP5BjC9hIU</recordid><startdate>20230310</startdate><enddate>20230310</enddate><creator>Perini, Carlo A. R.</creator><creator>Castro-Mendez, Andres-Felipe</creator><creator>Kodalle, Tim</creator><creator>Ravello, Magdalena</creator><creator>Hidalgo, Juanita</creator><creator>Gomez-Dominguez, Martin</creator><creator>Li, Ruipeng</creator><creator>Taddei, Margherita</creator><creator>Giridharagopal, Rajiv</creator><creator>Pothoof, Justin</creator><creator>Sutter-Fella, Carolin M.</creator><creator>Ginger, David S.</creator><creator>Correa-Baena, Juan-Pablo</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6076-852X</orcidid><orcidid>https://orcid.org/0000-0002-3860-1149</orcidid><orcidid>https://orcid.org/0000-0002-7769-0869</orcidid><orcidid>https://orcid.org/0000-0003-4122-8418</orcidid><orcidid>https://orcid.org/0000-0002-8765-0772</orcidid><orcidid>https://orcid.org/0000-0002-2613-0706</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid><orcidid>https://orcid.org/0000000341228418</orcidid><orcidid>https://orcid.org/0000000226130706</orcidid><orcidid>https://orcid.org/0000000287650772</orcidid><orcidid>https://orcid.org/000000016076852X</orcidid><orcidid>https://orcid.org/0000000277690869</orcidid><orcidid>https://orcid.org/0000000238601149</orcidid><orcidid>https://orcid.org/0000000297595447</orcidid></search><sort><creationdate>20230310</creationdate><title>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</title><author>Perini, Carlo A. R. ; Castro-Mendez, Andres-Felipe ; Kodalle, Tim ; Ravello, Magdalena ; Hidalgo, Juanita ; Gomez-Dominguez, Martin ; Li, Ruipeng ; Taddei, Margherita ; Giridharagopal, Rajiv ; Pothoof, Justin ; Sutter-Fella, Carolin M. ; Ginger, David S. ; Correa-Baena, Juan-Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>annealing (metallurgy)</topic><topic>cations</topic><topic>deposition</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>interfaces</topic><topic>layers</topic><toplevel>online_resources</toplevel><creatorcontrib>Perini, Carlo A. R.</creatorcontrib><creatorcontrib>Castro-Mendez, Andres-Felipe</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Ravello, Magdalena</creatorcontrib><creatorcontrib>Hidalgo, Juanita</creatorcontrib><creatorcontrib>Gomez-Dominguez, Martin</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Taddei, Margherita</creatorcontrib><creatorcontrib>Giridharagopal, Rajiv</creatorcontrib><creatorcontrib>Pothoof, Justin</creatorcontrib><creatorcontrib>Sutter-Fella, Carolin M.</creatorcontrib><creatorcontrib>Ginger, David S.</creatorcontrib><creatorcontrib>Correa-Baena, Juan-Pablo</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perini, Carlo A. R.</au><au>Castro-Mendez, Andres-Felipe</au><au>Kodalle, Tim</au><au>Ravello, Magdalena</au><au>Hidalgo, Juanita</au><au>Gomez-Dominguez, Martin</au><au>Li, Ruipeng</au><au>Taddei, Margherita</au><au>Giridharagopal, Rajiv</au><au>Pothoof, Justin</au><au>Sutter-Fella, Carolin M.</au><au>Ginger, David S.</au><au>Correa-Baena, Juan-Pablo</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2023-03-10</date><risdate>2023</risdate><volume>8</volume><issue>3</issue><spage>1408</spage><epage>1415</epage><pages>1408-1415</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.2c02419</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6076-852X</orcidid><orcidid>https://orcid.org/0000-0002-3860-1149</orcidid><orcidid>https://orcid.org/0000-0002-7769-0869</orcidid><orcidid>https://orcid.org/0000-0003-4122-8418</orcidid><orcidid>https://orcid.org/0000-0002-8765-0772</orcidid><orcidid>https://orcid.org/0000-0002-2613-0706</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid><orcidid>https://orcid.org/0000000341228418</orcidid><orcidid>https://orcid.org/0000000226130706</orcidid><orcidid>https://orcid.org/0000000287650772</orcidid><orcidid>https://orcid.org/000000016076852X</orcidid><orcidid>https://orcid.org/0000000277690869</orcidid><orcidid>https://orcid.org/0000000238601149</orcidid><orcidid>https://orcid.org/0000000297595447</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2023-03, Vol.8 (3), p.1408-1415
issn 2380-8195
2380-8195
language eng
recordid cdi_osti_scitechconnect_1972949
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects annealing (metallurgy)
cations
deposition
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
interfaces
layers
title Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vapor-Deposited%20n%20=%202%20Ruddlesden%E2%80%93Popper%20Interface%20Layers%20Aid%20Charge%20Carrier%20Extraction%20in%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20energy%20letters&rft.au=Perini,%20Carlo%20A.%20R.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2023-03-10&rft.volume=8&rft.issue=3&rft.spage=1408&rft.epage=1415&rft.pages=1408-1415&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.2c02419&rft_dat=%3Cacs_osti_%3Ec53073566%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true