Loading…
Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells
Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phase...
Saved in:
Published in: | ACS energy letters 2023-03, Vol.8 (3), p.1408-1415 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143 |
---|---|
cites | cdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143 |
container_end_page | 1415 |
container_issue | 3 |
container_start_page | 1408 |
container_title | ACS energy letters |
container_volume | 8 |
creator | Perini, Carlo A. R. Castro-Mendez, Andres-Felipe Kodalle, Tim Ravello, Magdalena Hidalgo, Juanita Gomez-Dominguez, Martin Li, Ruipeng Taddei, Margherita Giridharagopal, Rajiv Pothoof, Justin Sutter-Fella, Carolin M. Ginger, David S. Correa-Baena, Juan-Pablo |
description | Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies. |
doi_str_mv | 10.1021/acsenergylett.2c02419 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1972949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c53073566</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</originalsourceid><addsrcrecordid>eNqFUE1LAzEUXETBUvsThOB9a5L9zMFDWasWCooWr0uavG23rsnykoq9-R_8h_4SI-1BT_IO78GbGWYmis4ZHTPK2aVUDgzgateB92OuKE-ZOIoGPClpXDKRHf-6T6ORcxtKKcvLLMwgwmfZW4yvobeu9aCJIVeEk8et1h04Debr4_PB9j0gmRkP2EgFZC53gI5MWk2qtcQVkEoitgEzffcolW-tIa0hD4D2zb0EXfJkO4mkgq5zZ9FJIzsHo8MeRoub6aK6i-f3t7NqMo9lkgsfN5IvhdJ5IRJaspTniRJNumSaS0WLVAf7NKNABUgBXDepTFSeZgWVeZazNBlGF3tZ63xbOxVcqLWyxoDyNRMFF6kIoGwPUmidQ2jqHttXibua0fqn3_pPv_Wh38Bje1541xu7RROS_MP5BjC9hIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Perini, Carlo A. R. ; Castro-Mendez, Andres-Felipe ; Kodalle, Tim ; Ravello, Magdalena ; Hidalgo, Juanita ; Gomez-Dominguez, Martin ; Li, Ruipeng ; Taddei, Margherita ; Giridharagopal, Rajiv ; Pothoof, Justin ; Sutter-Fella, Carolin M. ; Ginger, David S. ; Correa-Baena, Juan-Pablo</creator><creatorcontrib>Perini, Carlo A. R. ; Castro-Mendez, Andres-Felipe ; Kodalle, Tim ; Ravello, Magdalena ; Hidalgo, Juanita ; Gomez-Dominguez, Martin ; Li, Ruipeng ; Taddei, Margherita ; Giridharagopal, Rajiv ; Pothoof, Justin ; Sutter-Fella, Carolin M. ; Ginger, David S. ; Correa-Baena, Juan-Pablo ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><description>Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.2c02419</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>annealing (metallurgy) ; cations ; deposition ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; interfaces ; layers</subject><ispartof>ACS energy letters, 2023-03, Vol.8 (3), p.1408-1415</ispartof><rights>2023 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</citedby><cites>FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</cites><orcidid>0000-0001-6076-852X ; 0000-0002-3860-1149 ; 0000-0002-7769-0869 ; 0000-0003-4122-8418 ; 0000-0002-8765-0772 ; 0000-0002-2613-0706 ; 0000-0002-9759-5447 ; 0000000341228418 ; 0000000226130706 ; 0000000287650772 ; 000000016076852X ; 0000000277690869 ; 0000000238601149 ; 0000000297595447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1972949$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perini, Carlo A. R.</creatorcontrib><creatorcontrib>Castro-Mendez, Andres-Felipe</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Ravello, Magdalena</creatorcontrib><creatorcontrib>Hidalgo, Juanita</creatorcontrib><creatorcontrib>Gomez-Dominguez, Martin</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Taddei, Margherita</creatorcontrib><creatorcontrib>Giridharagopal, Rajiv</creatorcontrib><creatorcontrib>Pothoof, Justin</creatorcontrib><creatorcontrib>Sutter-Fella, Carolin M.</creatorcontrib><creatorcontrib>Ginger, David S.</creatorcontrib><creatorcontrib>Correa-Baena, Juan-Pablo</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><title>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies.</description><subject>annealing (metallurgy)</subject><subject>cations</subject><subject>deposition</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>interfaces</subject><subject>layers</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUXETBUvsThOB9a5L9zMFDWasWCooWr0uavG23rsnykoq9-R_8h_4SI-1BT_IO78GbGWYmis4ZHTPK2aVUDgzgateB92OuKE-ZOIoGPClpXDKRHf-6T6ORcxtKKcvLLMwgwmfZW4yvobeu9aCJIVeEk8et1h04Debr4_PB9j0gmRkP2EgFZC53gI5MWk2qtcQVkEoitgEzffcolW-tIa0hD4D2zb0EXfJkO4mkgq5zZ9FJIzsHo8MeRoub6aK6i-f3t7NqMo9lkgsfN5IvhdJ5IRJaspTniRJNumSaS0WLVAf7NKNABUgBXDepTFSeZgWVeZazNBlGF3tZ63xbOxVcqLWyxoDyNRMFF6kIoGwPUmidQ2jqHttXibua0fqn3_pPv_Wh38Bje1541xu7RROS_MP5BjC9hIU</recordid><startdate>20230310</startdate><enddate>20230310</enddate><creator>Perini, Carlo A. R.</creator><creator>Castro-Mendez, Andres-Felipe</creator><creator>Kodalle, Tim</creator><creator>Ravello, Magdalena</creator><creator>Hidalgo, Juanita</creator><creator>Gomez-Dominguez, Martin</creator><creator>Li, Ruipeng</creator><creator>Taddei, Margherita</creator><creator>Giridharagopal, Rajiv</creator><creator>Pothoof, Justin</creator><creator>Sutter-Fella, Carolin M.</creator><creator>Ginger, David S.</creator><creator>Correa-Baena, Juan-Pablo</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6076-852X</orcidid><orcidid>https://orcid.org/0000-0002-3860-1149</orcidid><orcidid>https://orcid.org/0000-0002-7769-0869</orcidid><orcidid>https://orcid.org/0000-0003-4122-8418</orcidid><orcidid>https://orcid.org/0000-0002-8765-0772</orcidid><orcidid>https://orcid.org/0000-0002-2613-0706</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid><orcidid>https://orcid.org/0000000341228418</orcidid><orcidid>https://orcid.org/0000000226130706</orcidid><orcidid>https://orcid.org/0000000287650772</orcidid><orcidid>https://orcid.org/000000016076852X</orcidid><orcidid>https://orcid.org/0000000277690869</orcidid><orcidid>https://orcid.org/0000000238601149</orcidid><orcidid>https://orcid.org/0000000297595447</orcidid></search><sort><creationdate>20230310</creationdate><title>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</title><author>Perini, Carlo A. R. ; Castro-Mendez, Andres-Felipe ; Kodalle, Tim ; Ravello, Magdalena ; Hidalgo, Juanita ; Gomez-Dominguez, Martin ; Li, Ruipeng ; Taddei, Margherita ; Giridharagopal, Rajiv ; Pothoof, Justin ; Sutter-Fella, Carolin M. ; Ginger, David S. ; Correa-Baena, Juan-Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>annealing (metallurgy)</topic><topic>cations</topic><topic>deposition</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>interfaces</topic><topic>layers</topic><toplevel>online_resources</toplevel><creatorcontrib>Perini, Carlo A. R.</creatorcontrib><creatorcontrib>Castro-Mendez, Andres-Felipe</creatorcontrib><creatorcontrib>Kodalle, Tim</creatorcontrib><creatorcontrib>Ravello, Magdalena</creatorcontrib><creatorcontrib>Hidalgo, Juanita</creatorcontrib><creatorcontrib>Gomez-Dominguez, Martin</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Taddei, Margherita</creatorcontrib><creatorcontrib>Giridharagopal, Rajiv</creatorcontrib><creatorcontrib>Pothoof, Justin</creatorcontrib><creatorcontrib>Sutter-Fella, Carolin M.</creatorcontrib><creatorcontrib>Ginger, David S.</creatorcontrib><creatorcontrib>Correa-Baena, Juan-Pablo</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perini, Carlo A. R.</au><au>Castro-Mendez, Andres-Felipe</au><au>Kodalle, Tim</au><au>Ravello, Magdalena</au><au>Hidalgo, Juanita</au><au>Gomez-Dominguez, Martin</au><au>Li, Ruipeng</au><au>Taddei, Margherita</au><au>Giridharagopal, Rajiv</au><au>Pothoof, Justin</au><au>Sutter-Fella, Carolin M.</au><au>Ginger, David S.</au><au>Correa-Baena, Juan-Pablo</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2023-03-10</date><risdate>2023</risdate><volume>8</volume><issue>3</issue><spage>1408</spage><epage>1415</epage><pages>1408-1415</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Interfacial passivation with bulky organic cations such as phenetylammonium iodide has enabled high performance for metal halide perovskite optoelectronic devices. However, the homogeneity of these interfaces and their formation dynamics are poorly understood. We study how Ruddlesden–Popper 2D phases form at a 3D perovskite interface when the 2D precursors are introduced via solution or via vapor. When using vapor deposition, we observe uniform coverage of the capping layer and the formation of a predominantly n = 2 Ruddlesden–Popper phase. In contrast, when using solution deposition, we observe the presence of a mixture of n = 2 and n = 1 in the film and the formation of aggregates of the organic cations. As a result of the better phase purity and uniformity, vapor deposition enables higher median solar cell performance with narrower distribution compared to solution-treated films. This study provides fundamental information that the perovskite community can use to better design capping layers to achieve higher charge extraction efficiencies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.2c02419</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6076-852X</orcidid><orcidid>https://orcid.org/0000-0002-3860-1149</orcidid><orcidid>https://orcid.org/0000-0002-7769-0869</orcidid><orcidid>https://orcid.org/0000-0003-4122-8418</orcidid><orcidid>https://orcid.org/0000-0002-8765-0772</orcidid><orcidid>https://orcid.org/0000-0002-2613-0706</orcidid><orcidid>https://orcid.org/0000-0002-9759-5447</orcidid><orcidid>https://orcid.org/0000000341228418</orcidid><orcidid>https://orcid.org/0000000226130706</orcidid><orcidid>https://orcid.org/0000000287650772</orcidid><orcidid>https://orcid.org/000000016076852X</orcidid><orcidid>https://orcid.org/0000000277690869</orcidid><orcidid>https://orcid.org/0000000238601149</orcidid><orcidid>https://orcid.org/0000000297595447</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2023-03, Vol.8 (3), p.1408-1415 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_1972949 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | annealing (metallurgy) cations deposition INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY interfaces layers |
title | Vapor-Deposited n = 2 Ruddlesden–Popper Interface Layers Aid Charge Carrier Extraction in Perovskite Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vapor-Deposited%20n%20=%202%20Ruddlesden%E2%80%93Popper%20Interface%20Layers%20Aid%20Charge%20Carrier%20Extraction%20in%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20energy%20letters&rft.au=Perini,%20Carlo%20A.%20R.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2023-03-10&rft.volume=8&rft.issue=3&rft.spage=1408&rft.epage=1415&rft.pages=1408-1415&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.2c02419&rft_dat=%3Cacs_osti_%3Ec53073566%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-fa2b9cd67930814263c9f4b1d2ac074d858050e09ea9e2df4a3c64570a656143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |