Loading…

Oxide derived Cu nanofibril assembly for enhanced nonenzymatic glucose sensing

In this report, we have prepared copper nanofibril assembly via thermal oxidation followed by electrochemical reduction processes, exhibiting superior glucose detection ability. The morphological analysis evidenced the formation of rough islands or nanofibril structure on the Cu surface depending on...

Full description

Saved in:
Bibliographic Details
Published in:Materials today communications 2023-06, Vol.35 (C), p.106286, Article 106286
Main Authors: Muchharla, Baleeswaraiah, Barbee, Brianna, Darby, Marlon, Cao, Wei, Elsayed–Ali, Hani, Sadasivuni, Kishor Kumar, Adedeji, Adetayo, Kumar, Kapil, Karoui, Abdennaceur, Panwar, Preety, Slaughter, Gymama, Kumar, Bijandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this report, we have prepared copper nanofibril assembly via thermal oxidation followed by electrochemical reduction processes, exhibiting superior glucose detection ability. The morphological analysis evidenced the formation of rough islands or nanofibril structure on the Cu surface depending on initial thermal oxidation temperature. The glucose detection performance was investigated by performing cyclic voltammetry and chronoamperometry with varying glucose concentration. A high sensitivity (4131.57 μA mM−1 cm−2), low detection limit (1.41 μM), wider linear range (0–3.9 mM) and long–term stability (30 days) have been recorded for electrode thermally oxidized at 400 °C followed by electrochemical reduction process (rCu_400). The sensitivity is almost three times higher in comparison to the planner Cu surface. This significantly enhanced glucose sensing ability rCu_400 has been attributed to the nanofibril morphology, origination of Cu (111) facet and formation of a stable oxide layer evidenced by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Despite higher sensitivity, rCu_400 electrode does not show any response to the chloride ion, dopamine, ascorbic acid and uric acid. These results indicate that the Cu nanofibril structure prepared via simple oxidation/reduction process can be an excellent candidate to be used as an electrode for glucose sensing application. [Display omitted]
ISSN:2352-4928
2352-4928
DOI:10.1016/j.mtcomm.2023.106286