Loading…
Interpretable boosted-decision-tree analysis for the Majorana Demonstrator
The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable co...
Saved in:
Published in: | Physical review. C 2023-01, Vol.107 (1), Article 014321 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Physical review. C |
container_volume | 107 |
creator | Arnquist, I. J. Avignone, F. T. Barabash, A. S. Barton, C. J. Bhimani, K. H. Blalock, E. Bos, B. Busch, M. Buuck, M. Caldwell, T. S. Chan, Y-D. Christofferson, C. D. Chu, P.-H. Clark, M. L. Cuesta, C. Detwiler, J. A. Efremenko, Yu Elliott, S. R. Giovanetti, G. K. Green, M. P. Gruszko, J. Guinn, I. S. Guiseppe, V. E. Haufe, C. R. Henning, R. Hervas Aguilar, D. Hoppe, E. W. Hostiuc, A. Kidd, M. F. Kim, I. Kouzes, R. T. Lannen V., T. E. Li, A. López-Castaño, J. M. Martin, E. L. Martin, R. D. Massarczyk, R. Meijer, S. J. Oli, T. K. Othman, G. Paudel, L. S. Pettus, W. Poon, A. W. P. Radford, D. C. Reine, A. L. Rielage, K. Ruof, N. W. Schaper, D. C. Tedeschi, D. Varner, R. L. Vasilyev, S. Wilkerson, J. F. Wiseman, C. Xu, W. Yu, C.-H. |
description | The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors. |
doi_str_mv | 10.1103/PhysRevC.107.014321 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_107_014321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsNR-Ai_Be-pMNtnNHqX-aaWiSO9hsjuhKW227C5Cv72RqnN5w-PxePyEuEWYI4K8_9ie4id_LeYIeg5YygIvxKQolcmNMfLy_6-razGLcQcAqMBohIl4XQ2JwzFwonbPWet9TOxyx7aPvR_yFJgzGmh_in3MOh-ytOXsjXY-jG72yAc_xBQo-XAjrjraR5796lRsnp82i2W-fn9ZLR7WuS00przWTLJ1Riok1WmyBCRRKQtUOe3KWtZtral2XVGhaVFVjqkEqdx4qOVU3J1rx6V9E22f2G6tHwa2qUGjFWg1huQ5ZIOPMXDXHEN_oHBqEJofas0ftdHQzZma_AZ6D2L-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Arnquist, I. J. ; Avignone, F. T. ; Barabash, A. S. ; Barton, C. J. ; Bhimani, K. H. ; Blalock, E. ; Bos, B. ; Busch, M. ; Buuck, M. ; Caldwell, T. S. ; Chan, Y-D. ; Christofferson, C. D. ; Chu, P.-H. ; Clark, M. L. ; Cuesta, C. ; Detwiler, J. A. ; Efremenko, Yu ; Elliott, S. R. ; Giovanetti, G. K. ; Green, M. P. ; Gruszko, J. ; Guinn, I. S. ; Guiseppe, V. E. ; Haufe, C. R. ; Henning, R. ; Hervas Aguilar, D. ; Hoppe, E. W. ; Hostiuc, A. ; Kidd, M. F. ; Kim, I. ; Kouzes, R. T. ; Lannen V., T. E. ; Li, A. ; López-Castaño, J. M. ; Martin, E. L. ; Martin, R. D. ; Massarczyk, R. ; Meijer, S. J. ; Oli, T. K. ; Othman, G. ; Paudel, L. S. ; Pettus, W. ; Poon, A. W. P. ; Radford, D. C. ; Reine, A. L. ; Rielage, K. ; Ruof, N. W. ; Schaper, D. C. ; Tedeschi, D. ; Varner, R. L. ; Vasilyev, S. ; Wilkerson, J. F. ; Wiseman, C. ; Xu, W. ; Yu, C.-H.</creator><creatorcontrib>Arnquist, I. J. ; Avignone, F. T. ; Barabash, A. S. ; Barton, C. J. ; Bhimani, K. H. ; Blalock, E. ; Bos, B. ; Busch, M. ; Buuck, M. ; Caldwell, T. S. ; Chan, Y-D. ; Christofferson, C. D. ; Chu, P.-H. ; Clark, M. L. ; Cuesta, C. ; Detwiler, J. A. ; Efremenko, Yu ; Elliott, S. R. ; Giovanetti, G. K. ; Green, M. P. ; Gruszko, J. ; Guinn, I. S. ; Guiseppe, V. E. ; Haufe, C. R. ; Henning, R. ; Hervas Aguilar, D. ; Hoppe, E. W. ; Hostiuc, A. ; Kidd, M. F. ; Kim, I. ; Kouzes, R. T. ; Lannen V., T. E. ; Li, A. ; López-Castaño, J. M. ; Martin, E. L. ; Martin, R. D. ; Massarczyk, R. ; Meijer, S. J. ; Oli, T. K. ; Othman, G. ; Paudel, L. S. ; Pettus, W. ; Poon, A. W. P. ; Radford, D. C. ; Reine, A. L. ; Rielage, K. ; Ruof, N. W. ; Schaper, D. C. ; Tedeschi, D. ; Varner, R. L. ; Vasilyev, S. ; Wilkerson, J. F. ; Wiseman, C. ; Xu, W. ; Yu, C.-H. ; <span class="sc">Majorana</span> Collaboration ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; University of North Carolina, Chapel Hill, NC (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.107.014321</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>germanium ; low-background physics ; machine learning ; neutrinoless double beta decay ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; solid-state detectors</subject><ispartof>Physical review. C, 2023-01, Vol.107 (1), Article 014321</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173</cites><orcidid>0000-0002-4844-9339 ; 0000000283946613 ; 0000000193619870 ; 0000000248449339 ; 0000000313722910 ; 0000000180019235 ; 0000000213660361 ; 0000000273927152 ; 0000000237772237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1976076$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnquist, I. J.</creatorcontrib><creatorcontrib>Avignone, F. T.</creatorcontrib><creatorcontrib>Barabash, A. S.</creatorcontrib><creatorcontrib>Barton, C. J.</creatorcontrib><creatorcontrib>Bhimani, K. H.</creatorcontrib><creatorcontrib>Blalock, E.</creatorcontrib><creatorcontrib>Bos, B.</creatorcontrib><creatorcontrib>Busch, M.</creatorcontrib><creatorcontrib>Buuck, M.</creatorcontrib><creatorcontrib>Caldwell, T. S.</creatorcontrib><creatorcontrib>Chan, Y-D.</creatorcontrib><creatorcontrib>Christofferson, C. D.</creatorcontrib><creatorcontrib>Chu, P.-H.</creatorcontrib><creatorcontrib>Clark, M. L.</creatorcontrib><creatorcontrib>Cuesta, C.</creatorcontrib><creatorcontrib>Detwiler, J. A.</creatorcontrib><creatorcontrib>Efremenko, Yu</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><creatorcontrib>Giovanetti, G. K.</creatorcontrib><creatorcontrib>Green, M. P.</creatorcontrib><creatorcontrib>Gruszko, J.</creatorcontrib><creatorcontrib>Guinn, I. S.</creatorcontrib><creatorcontrib>Guiseppe, V. E.</creatorcontrib><creatorcontrib>Haufe, C. R.</creatorcontrib><creatorcontrib>Henning, R.</creatorcontrib><creatorcontrib>Hervas Aguilar, D.</creatorcontrib><creatorcontrib>Hoppe, E. W.</creatorcontrib><creatorcontrib>Hostiuc, A.</creatorcontrib><creatorcontrib>Kidd, M. F.</creatorcontrib><creatorcontrib>Kim, I.</creatorcontrib><creatorcontrib>Kouzes, R. T.</creatorcontrib><creatorcontrib>Lannen V., T. E.</creatorcontrib><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>López-Castaño, J. M.</creatorcontrib><creatorcontrib>Martin, E. L.</creatorcontrib><creatorcontrib>Martin, R. D.</creatorcontrib><creatorcontrib>Massarczyk, R.</creatorcontrib><creatorcontrib>Meijer, S. J.</creatorcontrib><creatorcontrib>Oli, T. K.</creatorcontrib><creatorcontrib>Othman, G.</creatorcontrib><creatorcontrib>Paudel, L. S.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Poon, A. W. P.</creatorcontrib><creatorcontrib>Radford, D. C.</creatorcontrib><creatorcontrib>Reine, A. L.</creatorcontrib><creatorcontrib>Rielage, K.</creatorcontrib><creatorcontrib>Ruof, N. W.</creatorcontrib><creatorcontrib>Schaper, D. C.</creatorcontrib><creatorcontrib>Tedeschi, D.</creatorcontrib><creatorcontrib>Varner, R. L.</creatorcontrib><creatorcontrib>Vasilyev, S.</creatorcontrib><creatorcontrib>Wilkerson, J. F.</creatorcontrib><creatorcontrib>Wiseman, C.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Yu, C.-H.</creatorcontrib><creatorcontrib><span class="sc">Majorana</span> Collaboration</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</title><title>Physical review. C</title><description>The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.</description><subject>germanium</subject><subject>low-background physics</subject><subject>machine learning</subject><subject>neutrinoless double beta decay</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>solid-state detectors</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRsNR-Ai_Be-pMNtnNHqX-aaWiSO9hsjuhKW227C5Cv72RqnN5w-PxePyEuEWYI4K8_9ie4id_LeYIeg5YygIvxKQolcmNMfLy_6-razGLcQcAqMBohIl4XQ2JwzFwonbPWet9TOxyx7aPvR_yFJgzGmh_in3MOh-ytOXsjXY-jG72yAc_xBQo-XAjrjraR5796lRsnp82i2W-fn9ZLR7WuS00przWTLJ1Riok1WmyBCRRKQtUOe3KWtZtral2XVGhaVFVjqkEqdx4qOVU3J1rx6V9E22f2G6tHwa2qUGjFWg1huQ5ZIOPMXDXHEN_oHBqEJofas0ftdHQzZma_AZ6D2L-</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Arnquist, I. J.</creator><creator>Avignone, F. T.</creator><creator>Barabash, A. S.</creator><creator>Barton, C. J.</creator><creator>Bhimani, K. H.</creator><creator>Blalock, E.</creator><creator>Bos, B.</creator><creator>Busch, M.</creator><creator>Buuck, M.</creator><creator>Caldwell, T. S.</creator><creator>Chan, Y-D.</creator><creator>Christofferson, C. D.</creator><creator>Chu, P.-H.</creator><creator>Clark, M. L.</creator><creator>Cuesta, C.</creator><creator>Detwiler, J. A.</creator><creator>Efremenko, Yu</creator><creator>Elliott, S. R.</creator><creator>Giovanetti, G. K.</creator><creator>Green, M. P.</creator><creator>Gruszko, J.</creator><creator>Guinn, I. S.</creator><creator>Guiseppe, V. E.</creator><creator>Haufe, C. R.</creator><creator>Henning, R.</creator><creator>Hervas Aguilar, D.</creator><creator>Hoppe, E. W.</creator><creator>Hostiuc, A.</creator><creator>Kidd, M. F.</creator><creator>Kim, I.</creator><creator>Kouzes, R. T.</creator><creator>Lannen V., T. E.</creator><creator>Li, A.</creator><creator>López-Castaño, J. M.</creator><creator>Martin, E. L.</creator><creator>Martin, R. D.</creator><creator>Massarczyk, R.</creator><creator>Meijer, S. J.</creator><creator>Oli, T. K.</creator><creator>Othman, G.</creator><creator>Paudel, L. S.</creator><creator>Pettus, W.</creator><creator>Poon, A. W. P.</creator><creator>Radford, D. C.</creator><creator>Reine, A. L.</creator><creator>Rielage, K.</creator><creator>Ruof, N. W.</creator><creator>Schaper, D. C.</creator><creator>Tedeschi, D.</creator><creator>Varner, R. L.</creator><creator>Vasilyev, S.</creator><creator>Wilkerson, J. F.</creator><creator>Wiseman, C.</creator><creator>Xu, W.</creator><creator>Yu, C.-H.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000000283946613</orcidid><orcidid>https://orcid.org/0000000193619870</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000313722910</orcidid><orcidid>https://orcid.org/0000000180019235</orcidid><orcidid>https://orcid.org/0000000213660361</orcidid><orcidid>https://orcid.org/0000000273927152</orcidid><orcidid>https://orcid.org/0000000237772237</orcidid></search><sort><creationdate>20230125</creationdate><title>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</title><author>Arnquist, I. J. ; Avignone, F. T. ; Barabash, A. S. ; Barton, C. J. ; Bhimani, K. H. ; Blalock, E. ; Bos, B. ; Busch, M. ; Buuck, M. ; Caldwell, T. S. ; Chan, Y-D. ; Christofferson, C. D. ; Chu, P.-H. ; Clark, M. L. ; Cuesta, C. ; Detwiler, J. A. ; Efremenko, Yu ; Elliott, S. R. ; Giovanetti, G. K. ; Green, M. P. ; Gruszko, J. ; Guinn, I. S. ; Guiseppe, V. E. ; Haufe, C. R. ; Henning, R. ; Hervas Aguilar, D. ; Hoppe, E. W. ; Hostiuc, A. ; Kidd, M. F. ; Kim, I. ; Kouzes, R. T. ; Lannen V., T. E. ; Li, A. ; López-Castaño, J. M. ; Martin, E. L. ; Martin, R. D. ; Massarczyk, R. ; Meijer, S. J. ; Oli, T. K. ; Othman, G. ; Paudel, L. S. ; Pettus, W. ; Poon, A. W. P. ; Radford, D. C. ; Reine, A. L. ; Rielage, K. ; Ruof, N. W. ; Schaper, D. C. ; Tedeschi, D. ; Varner, R. L. ; Vasilyev, S. ; Wilkerson, J. F. ; Wiseman, C. ; Xu, W. ; Yu, C.-H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>germanium</topic><topic>low-background physics</topic><topic>machine learning</topic><topic>neutrinoless double beta decay</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>solid-state detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnquist, I. J.</creatorcontrib><creatorcontrib>Avignone, F. T.</creatorcontrib><creatorcontrib>Barabash, A. S.</creatorcontrib><creatorcontrib>Barton, C. J.</creatorcontrib><creatorcontrib>Bhimani, K. H.</creatorcontrib><creatorcontrib>Blalock, E.</creatorcontrib><creatorcontrib>Bos, B.</creatorcontrib><creatorcontrib>Busch, M.</creatorcontrib><creatorcontrib>Buuck, M.</creatorcontrib><creatorcontrib>Caldwell, T. S.</creatorcontrib><creatorcontrib>Chan, Y-D.</creatorcontrib><creatorcontrib>Christofferson, C. D.</creatorcontrib><creatorcontrib>Chu, P.-H.</creatorcontrib><creatorcontrib>Clark, M. L.</creatorcontrib><creatorcontrib>Cuesta, C.</creatorcontrib><creatorcontrib>Detwiler, J. A.</creatorcontrib><creatorcontrib>Efremenko, Yu</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><creatorcontrib>Giovanetti, G. K.</creatorcontrib><creatorcontrib>Green, M. P.</creatorcontrib><creatorcontrib>Gruszko, J.</creatorcontrib><creatorcontrib>Guinn, I. S.</creatorcontrib><creatorcontrib>Guiseppe, V. E.</creatorcontrib><creatorcontrib>Haufe, C. R.</creatorcontrib><creatorcontrib>Henning, R.</creatorcontrib><creatorcontrib>Hervas Aguilar, D.</creatorcontrib><creatorcontrib>Hoppe, E. W.</creatorcontrib><creatorcontrib>Hostiuc, A.</creatorcontrib><creatorcontrib>Kidd, M. F.</creatorcontrib><creatorcontrib>Kim, I.</creatorcontrib><creatorcontrib>Kouzes, R. T.</creatorcontrib><creatorcontrib>Lannen V., T. E.</creatorcontrib><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>López-Castaño, J. M.</creatorcontrib><creatorcontrib>Martin, E. L.</creatorcontrib><creatorcontrib>Martin, R. D.</creatorcontrib><creatorcontrib>Massarczyk, R.</creatorcontrib><creatorcontrib>Meijer, S. J.</creatorcontrib><creatorcontrib>Oli, T. K.</creatorcontrib><creatorcontrib>Othman, G.</creatorcontrib><creatorcontrib>Paudel, L. S.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Poon, A. W. P.</creatorcontrib><creatorcontrib>Radford, D. C.</creatorcontrib><creatorcontrib>Reine, A. L.</creatorcontrib><creatorcontrib>Rielage, K.</creatorcontrib><creatorcontrib>Ruof, N. W.</creatorcontrib><creatorcontrib>Schaper, D. C.</creatorcontrib><creatorcontrib>Tedeschi, D.</creatorcontrib><creatorcontrib>Varner, R. L.</creatorcontrib><creatorcontrib>Vasilyev, S.</creatorcontrib><creatorcontrib>Wilkerson, J. F.</creatorcontrib><creatorcontrib>Wiseman, C.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Yu, C.-H.</creatorcontrib><creatorcontrib><span class="sc">Majorana</span> Collaboration</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnquist, I. J.</au><au>Avignone, F. T.</au><au>Barabash, A. S.</au><au>Barton, C. J.</au><au>Bhimani, K. H.</au><au>Blalock, E.</au><au>Bos, B.</au><au>Busch, M.</au><au>Buuck, M.</au><au>Caldwell, T. S.</au><au>Chan, Y-D.</au><au>Christofferson, C. D.</au><au>Chu, P.-H.</au><au>Clark, M. L.</au><au>Cuesta, C.</au><au>Detwiler, J. A.</au><au>Efremenko, Yu</au><au>Elliott, S. R.</au><au>Giovanetti, G. K.</au><au>Green, M. P.</au><au>Gruszko, J.</au><au>Guinn, I. S.</au><au>Guiseppe, V. E.</au><au>Haufe, C. R.</au><au>Henning, R.</au><au>Hervas Aguilar, D.</au><au>Hoppe, E. W.</au><au>Hostiuc, A.</au><au>Kidd, M. F.</au><au>Kim, I.</au><au>Kouzes, R. T.</au><au>Lannen V., T. E.</au><au>Li, A.</au><au>López-Castaño, J. M.</au><au>Martin, E. L.</au><au>Martin, R. D.</au><au>Massarczyk, R.</au><au>Meijer, S. J.</au><au>Oli, T. K.</au><au>Othman, G.</au><au>Paudel, L. S.</au><au>Pettus, W.</au><au>Poon, A. W. P.</au><au>Radford, D. C.</au><au>Reine, A. L.</au><au>Rielage, K.</au><au>Ruof, N. W.</au><au>Schaper, D. C.</au><au>Tedeschi, D.</au><au>Varner, R. L.</au><au>Vasilyev, S.</au><au>Wilkerson, J. F.</au><au>Wiseman, C.</au><au>Xu, W.</au><au>Yu, C.-H.</au><aucorp><span class="sc">Majorana</span> Collaboration</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</atitle><jtitle>Physical review. C</jtitle><date>2023-01-25</date><risdate>2023</risdate><volume>107</volume><issue>1</issue><artnum>014321</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.107.014321</doi><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000000283946613</orcidid><orcidid>https://orcid.org/0000000193619870</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000313722910</orcidid><orcidid>https://orcid.org/0000000180019235</orcidid><orcidid>https://orcid.org/0000000213660361</orcidid><orcidid>https://orcid.org/0000000273927152</orcidid><orcidid>https://orcid.org/0000000237772237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9985 |
ispartof | Physical review. C, 2023-01, Vol.107 (1), Article 014321 |
issn | 2469-9985 2469-9993 |
language | eng |
recordid | cdi_osti_scitechconnect_1976076 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | germanium low-background physics machine learning neutrinoless double beta decay NUCLEAR PHYSICS AND RADIATION PHYSICS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS solid-state detectors |
title | Interpretable boosted-decision-tree analysis for the Majorana Demonstrator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20boosted-decision-tree%20analysis%20for%20the%20Majorana%20Demonstrator&rft.jtitle=Physical%20review.%20C&rft.au=Arnquist,%20I.%20J.&rft.aucorp=%3Cspan%20class=%22sc%22%3EMajorana%3C/span%3E%20Collaboration&rft.date=2023-01-25&rft.volume=107&rft.issue=1&rft.artnum=014321&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.107.014321&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_107_014321%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |