Loading…

Interpretable boosted-decision-tree analysis for the Majorana Demonstrator

The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable co...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. C 2023-01, Vol.107 (1), Article 014321
Main Authors: Arnquist, I. J., Avignone, F. T., Barabash, A. S., Barton, C. J., Bhimani, K. H., Blalock, E., Bos, B., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y-D., Christofferson, C. D., Chu, P.-H., Clark, M. L., Cuesta, C., Detwiler, J. A., Efremenko, Yu, Elliott, S. R., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Henning, R., Hervas Aguilar, D., Hoppe, E. W., Hostiuc, A., Kidd, M. F., Kim, I., Kouzes, R. T., Lannen V., T. E., Li, A., López-Castaño, J. M., Martin, E. L., Martin, R. D., Massarczyk, R., Meijer, S. J., Oli, T. K., Othman, G., Paudel, L. S., Pettus, W., Poon, A. W. P., Radford, D. C., Reine, A. L., Rielage, K., Ruof, N. W., Schaper, D. C., Tedeschi, D., Varner, R. L., Vasilyev, S., Wilkerson, J. F., Wiseman, C., Xu, W., Yu, C.-H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173
container_end_page
container_issue 1
container_start_page
container_title Physical review. C
container_volume 107
creator Arnquist, I. J.
Avignone, F. T.
Barabash, A. S.
Barton, C. J.
Bhimani, K. H.
Blalock, E.
Bos, B.
Busch, M.
Buuck, M.
Caldwell, T. S.
Chan, Y-D.
Christofferson, C. D.
Chu, P.-H.
Clark, M. L.
Cuesta, C.
Detwiler, J. A.
Efremenko, Yu
Elliott, S. R.
Giovanetti, G. K.
Green, M. P.
Gruszko, J.
Guinn, I. S.
Guiseppe, V. E.
Haufe, C. R.
Henning, R.
Hervas Aguilar, D.
Hoppe, E. W.
Hostiuc, A.
Kidd, M. F.
Kim, I.
Kouzes, R. T.
Lannen V., T. E.
Li, A.
López-Castaño, J. M.
Martin, E. L.
Martin, R. D.
Massarczyk, R.
Meijer, S. J.
Oli, T. K.
Othman, G.
Paudel, L. S.
Pettus, W.
Poon, A. W. P.
Radford, D. C.
Reine, A. L.
Rielage, K.
Ruof, N. W.
Schaper, D. C.
Tedeschi, D.
Varner, R. L.
Vasilyev, S.
Wilkerson, J. F.
Wiseman, C.
Xu, W.
Yu, C.-H.
description The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.
doi_str_mv 10.1103/PhysRevC.107.014321
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1976076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_107_014321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsNR-Ai_Be-pMNtnNHqX-aaWiSO9hsjuhKW227C5Cv72RqnN5w-PxePyEuEWYI4K8_9ie4id_LeYIeg5YygIvxKQolcmNMfLy_6-razGLcQcAqMBohIl4XQ2JwzFwonbPWet9TOxyx7aPvR_yFJgzGmh_in3MOh-ytOXsjXY-jG72yAc_xBQo-XAjrjraR5796lRsnp82i2W-fn9ZLR7WuS00przWTLJ1Riok1WmyBCRRKQtUOe3KWtZtral2XVGhaVFVjqkEqdx4qOVU3J1rx6V9E22f2G6tHwa2qUGjFWg1huQ5ZIOPMXDXHEN_oHBqEJofas0ftdHQzZma_AZ6D2L-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Arnquist, I. J. ; Avignone, F. T. ; Barabash, A. S. ; Barton, C. J. ; Bhimani, K. H. ; Blalock, E. ; Bos, B. ; Busch, M. ; Buuck, M. ; Caldwell, T. S. ; Chan, Y-D. ; Christofferson, C. D. ; Chu, P.-H. ; Clark, M. L. ; Cuesta, C. ; Detwiler, J. A. ; Efremenko, Yu ; Elliott, S. R. ; Giovanetti, G. K. ; Green, M. P. ; Gruszko, J. ; Guinn, I. S. ; Guiseppe, V. E. ; Haufe, C. R. ; Henning, R. ; Hervas Aguilar, D. ; Hoppe, E. W. ; Hostiuc, A. ; Kidd, M. F. ; Kim, I. ; Kouzes, R. T. ; Lannen V., T. E. ; Li, A. ; López-Castaño, J. M. ; Martin, E. L. ; Martin, R. D. ; Massarczyk, R. ; Meijer, S. J. ; Oli, T. K. ; Othman, G. ; Paudel, L. S. ; Pettus, W. ; Poon, A. W. P. ; Radford, D. C. ; Reine, A. L. ; Rielage, K. ; Ruof, N. W. ; Schaper, D. C. ; Tedeschi, D. ; Varner, R. L. ; Vasilyev, S. ; Wilkerson, J. F. ; Wiseman, C. ; Xu, W. ; Yu, C.-H.</creator><creatorcontrib>Arnquist, I. J. ; Avignone, F. T. ; Barabash, A. S. ; Barton, C. J. ; Bhimani, K. H. ; Blalock, E. ; Bos, B. ; Busch, M. ; Buuck, M. ; Caldwell, T. S. ; Chan, Y-D. ; Christofferson, C. D. ; Chu, P.-H. ; Clark, M. L. ; Cuesta, C. ; Detwiler, J. A. ; Efremenko, Yu ; Elliott, S. R. ; Giovanetti, G. K. ; Green, M. P. ; Gruszko, J. ; Guinn, I. S. ; Guiseppe, V. E. ; Haufe, C. R. ; Henning, R. ; Hervas Aguilar, D. ; Hoppe, E. W. ; Hostiuc, A. ; Kidd, M. F. ; Kim, I. ; Kouzes, R. T. ; Lannen V., T. E. ; Li, A. ; López-Castaño, J. M. ; Martin, E. L. ; Martin, R. D. ; Massarczyk, R. ; Meijer, S. J. ; Oli, T. K. ; Othman, G. ; Paudel, L. S. ; Pettus, W. ; Poon, A. W. P. ; Radford, D. C. ; Reine, A. L. ; Rielage, K. ; Ruof, N. W. ; Schaper, D. C. ; Tedeschi, D. ; Varner, R. L. ; Vasilyev, S. ; Wilkerson, J. F. ; Wiseman, C. ; Xu, W. ; Yu, C.-H. ; &lt;span class="sc"&gt;Majorana&lt;/span&gt; Collaboration ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; University of North Carolina, Chapel Hill, NC (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.107.014321</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>germanium ; low-background physics ; machine learning ; neutrinoless double beta decay ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; solid-state detectors</subject><ispartof>Physical review. C, 2023-01, Vol.107 (1), Article 014321</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173</cites><orcidid>0000-0002-4844-9339 ; 0000000283946613 ; 0000000193619870 ; 0000000248449339 ; 0000000313722910 ; 0000000180019235 ; 0000000213660361 ; 0000000273927152 ; 0000000237772237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1976076$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnquist, I. J.</creatorcontrib><creatorcontrib>Avignone, F. T.</creatorcontrib><creatorcontrib>Barabash, A. S.</creatorcontrib><creatorcontrib>Barton, C. J.</creatorcontrib><creatorcontrib>Bhimani, K. H.</creatorcontrib><creatorcontrib>Blalock, E.</creatorcontrib><creatorcontrib>Bos, B.</creatorcontrib><creatorcontrib>Busch, M.</creatorcontrib><creatorcontrib>Buuck, M.</creatorcontrib><creatorcontrib>Caldwell, T. S.</creatorcontrib><creatorcontrib>Chan, Y-D.</creatorcontrib><creatorcontrib>Christofferson, C. D.</creatorcontrib><creatorcontrib>Chu, P.-H.</creatorcontrib><creatorcontrib>Clark, M. L.</creatorcontrib><creatorcontrib>Cuesta, C.</creatorcontrib><creatorcontrib>Detwiler, J. A.</creatorcontrib><creatorcontrib>Efremenko, Yu</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><creatorcontrib>Giovanetti, G. K.</creatorcontrib><creatorcontrib>Green, M. P.</creatorcontrib><creatorcontrib>Gruszko, J.</creatorcontrib><creatorcontrib>Guinn, I. S.</creatorcontrib><creatorcontrib>Guiseppe, V. E.</creatorcontrib><creatorcontrib>Haufe, C. R.</creatorcontrib><creatorcontrib>Henning, R.</creatorcontrib><creatorcontrib>Hervas Aguilar, D.</creatorcontrib><creatorcontrib>Hoppe, E. W.</creatorcontrib><creatorcontrib>Hostiuc, A.</creatorcontrib><creatorcontrib>Kidd, M. F.</creatorcontrib><creatorcontrib>Kim, I.</creatorcontrib><creatorcontrib>Kouzes, R. T.</creatorcontrib><creatorcontrib>Lannen V., T. E.</creatorcontrib><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>López-Castaño, J. M.</creatorcontrib><creatorcontrib>Martin, E. L.</creatorcontrib><creatorcontrib>Martin, R. D.</creatorcontrib><creatorcontrib>Massarczyk, R.</creatorcontrib><creatorcontrib>Meijer, S. J.</creatorcontrib><creatorcontrib>Oli, T. K.</creatorcontrib><creatorcontrib>Othman, G.</creatorcontrib><creatorcontrib>Paudel, L. S.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Poon, A. W. P.</creatorcontrib><creatorcontrib>Radford, D. C.</creatorcontrib><creatorcontrib>Reine, A. L.</creatorcontrib><creatorcontrib>Rielage, K.</creatorcontrib><creatorcontrib>Ruof, N. W.</creatorcontrib><creatorcontrib>Schaper, D. C.</creatorcontrib><creatorcontrib>Tedeschi, D.</creatorcontrib><creatorcontrib>Varner, R. L.</creatorcontrib><creatorcontrib>Vasilyev, S.</creatorcontrib><creatorcontrib>Wilkerson, J. F.</creatorcontrib><creatorcontrib>Wiseman, C.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Yu, C.-H.</creatorcontrib><creatorcontrib>&lt;span class="sc"&gt;Majorana&lt;/span&gt; Collaboration</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</title><title>Physical review. C</title><description>The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.</description><subject>germanium</subject><subject>low-background physics</subject><subject>machine learning</subject><subject>neutrinoless double beta decay</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>solid-state detectors</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRsNR-Ai_Be-pMNtnNHqX-aaWiSO9hsjuhKW227C5Cv72RqnN5w-PxePyEuEWYI4K8_9ie4id_LeYIeg5YygIvxKQolcmNMfLy_6-razGLcQcAqMBohIl4XQ2JwzFwonbPWet9TOxyx7aPvR_yFJgzGmh_in3MOh-ytOXsjXY-jG72yAc_xBQo-XAjrjraR5796lRsnp82i2W-fn9ZLR7WuS00przWTLJ1Riok1WmyBCRRKQtUOe3KWtZtral2XVGhaVFVjqkEqdx4qOVU3J1rx6V9E22f2G6tHwa2qUGjFWg1huQ5ZIOPMXDXHEN_oHBqEJofas0ftdHQzZma_AZ6D2L-</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Arnquist, I. J.</creator><creator>Avignone, F. T.</creator><creator>Barabash, A. S.</creator><creator>Barton, C. J.</creator><creator>Bhimani, K. H.</creator><creator>Blalock, E.</creator><creator>Bos, B.</creator><creator>Busch, M.</creator><creator>Buuck, M.</creator><creator>Caldwell, T. S.</creator><creator>Chan, Y-D.</creator><creator>Christofferson, C. D.</creator><creator>Chu, P.-H.</creator><creator>Clark, M. L.</creator><creator>Cuesta, C.</creator><creator>Detwiler, J. A.</creator><creator>Efremenko, Yu</creator><creator>Elliott, S. R.</creator><creator>Giovanetti, G. K.</creator><creator>Green, M. P.</creator><creator>Gruszko, J.</creator><creator>Guinn, I. S.</creator><creator>Guiseppe, V. E.</creator><creator>Haufe, C. R.</creator><creator>Henning, R.</creator><creator>Hervas Aguilar, D.</creator><creator>Hoppe, E. W.</creator><creator>Hostiuc, A.</creator><creator>Kidd, M. F.</creator><creator>Kim, I.</creator><creator>Kouzes, R. T.</creator><creator>Lannen V., T. E.</creator><creator>Li, A.</creator><creator>López-Castaño, J. M.</creator><creator>Martin, E. L.</creator><creator>Martin, R. D.</creator><creator>Massarczyk, R.</creator><creator>Meijer, S. J.</creator><creator>Oli, T. K.</creator><creator>Othman, G.</creator><creator>Paudel, L. S.</creator><creator>Pettus, W.</creator><creator>Poon, A. W. P.</creator><creator>Radford, D. C.</creator><creator>Reine, A. L.</creator><creator>Rielage, K.</creator><creator>Ruof, N. W.</creator><creator>Schaper, D. C.</creator><creator>Tedeschi, D.</creator><creator>Varner, R. L.</creator><creator>Vasilyev, S.</creator><creator>Wilkerson, J. F.</creator><creator>Wiseman, C.</creator><creator>Xu, W.</creator><creator>Yu, C.-H.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000000283946613</orcidid><orcidid>https://orcid.org/0000000193619870</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000313722910</orcidid><orcidid>https://orcid.org/0000000180019235</orcidid><orcidid>https://orcid.org/0000000213660361</orcidid><orcidid>https://orcid.org/0000000273927152</orcidid><orcidid>https://orcid.org/0000000237772237</orcidid></search><sort><creationdate>20230125</creationdate><title>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</title><author>Arnquist, I. J. ; Avignone, F. T. ; Barabash, A. S. ; Barton, C. J. ; Bhimani, K. H. ; Blalock, E. ; Bos, B. ; Busch, M. ; Buuck, M. ; Caldwell, T. S. ; Chan, Y-D. ; Christofferson, C. D. ; Chu, P.-H. ; Clark, M. L. ; Cuesta, C. ; Detwiler, J. A. ; Efremenko, Yu ; Elliott, S. R. ; Giovanetti, G. K. ; Green, M. P. ; Gruszko, J. ; Guinn, I. S. ; Guiseppe, V. E. ; Haufe, C. R. ; Henning, R. ; Hervas Aguilar, D. ; Hoppe, E. W. ; Hostiuc, A. ; Kidd, M. F. ; Kim, I. ; Kouzes, R. T. ; Lannen V., T. E. ; Li, A. ; López-Castaño, J. M. ; Martin, E. L. ; Martin, R. D. ; Massarczyk, R. ; Meijer, S. J. ; Oli, T. K. ; Othman, G. ; Paudel, L. S. ; Pettus, W. ; Poon, A. W. P. ; Radford, D. C. ; Reine, A. L. ; Rielage, K. ; Ruof, N. W. ; Schaper, D. C. ; Tedeschi, D. ; Varner, R. L. ; Vasilyev, S. ; Wilkerson, J. F. ; Wiseman, C. ; Xu, W. ; Yu, C.-H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>germanium</topic><topic>low-background physics</topic><topic>machine learning</topic><topic>neutrinoless double beta decay</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>solid-state detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnquist, I. J.</creatorcontrib><creatorcontrib>Avignone, F. T.</creatorcontrib><creatorcontrib>Barabash, A. S.</creatorcontrib><creatorcontrib>Barton, C. J.</creatorcontrib><creatorcontrib>Bhimani, K. H.</creatorcontrib><creatorcontrib>Blalock, E.</creatorcontrib><creatorcontrib>Bos, B.</creatorcontrib><creatorcontrib>Busch, M.</creatorcontrib><creatorcontrib>Buuck, M.</creatorcontrib><creatorcontrib>Caldwell, T. S.</creatorcontrib><creatorcontrib>Chan, Y-D.</creatorcontrib><creatorcontrib>Christofferson, C. D.</creatorcontrib><creatorcontrib>Chu, P.-H.</creatorcontrib><creatorcontrib>Clark, M. L.</creatorcontrib><creatorcontrib>Cuesta, C.</creatorcontrib><creatorcontrib>Detwiler, J. A.</creatorcontrib><creatorcontrib>Efremenko, Yu</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><creatorcontrib>Giovanetti, G. K.</creatorcontrib><creatorcontrib>Green, M. P.</creatorcontrib><creatorcontrib>Gruszko, J.</creatorcontrib><creatorcontrib>Guinn, I. S.</creatorcontrib><creatorcontrib>Guiseppe, V. E.</creatorcontrib><creatorcontrib>Haufe, C. R.</creatorcontrib><creatorcontrib>Henning, R.</creatorcontrib><creatorcontrib>Hervas Aguilar, D.</creatorcontrib><creatorcontrib>Hoppe, E. W.</creatorcontrib><creatorcontrib>Hostiuc, A.</creatorcontrib><creatorcontrib>Kidd, M. F.</creatorcontrib><creatorcontrib>Kim, I.</creatorcontrib><creatorcontrib>Kouzes, R. T.</creatorcontrib><creatorcontrib>Lannen V., T. E.</creatorcontrib><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>López-Castaño, J. M.</creatorcontrib><creatorcontrib>Martin, E. L.</creatorcontrib><creatorcontrib>Martin, R. D.</creatorcontrib><creatorcontrib>Massarczyk, R.</creatorcontrib><creatorcontrib>Meijer, S. J.</creatorcontrib><creatorcontrib>Oli, T. K.</creatorcontrib><creatorcontrib>Othman, G.</creatorcontrib><creatorcontrib>Paudel, L. S.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Poon, A. W. P.</creatorcontrib><creatorcontrib>Radford, D. C.</creatorcontrib><creatorcontrib>Reine, A. L.</creatorcontrib><creatorcontrib>Rielage, K.</creatorcontrib><creatorcontrib>Ruof, N. W.</creatorcontrib><creatorcontrib>Schaper, D. C.</creatorcontrib><creatorcontrib>Tedeschi, D.</creatorcontrib><creatorcontrib>Varner, R. L.</creatorcontrib><creatorcontrib>Vasilyev, S.</creatorcontrib><creatorcontrib>Wilkerson, J. F.</creatorcontrib><creatorcontrib>Wiseman, C.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Yu, C.-H.</creatorcontrib><creatorcontrib>&lt;span class="sc"&gt;Majorana&lt;/span&gt; Collaboration</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnquist, I. J.</au><au>Avignone, F. T.</au><au>Barabash, A. S.</au><au>Barton, C. J.</au><au>Bhimani, K. H.</au><au>Blalock, E.</au><au>Bos, B.</au><au>Busch, M.</au><au>Buuck, M.</au><au>Caldwell, T. S.</au><au>Chan, Y-D.</au><au>Christofferson, C. D.</au><au>Chu, P.-H.</au><au>Clark, M. L.</au><au>Cuesta, C.</au><au>Detwiler, J. A.</au><au>Efremenko, Yu</au><au>Elliott, S. R.</au><au>Giovanetti, G. K.</au><au>Green, M. P.</au><au>Gruszko, J.</au><au>Guinn, I. S.</au><au>Guiseppe, V. E.</au><au>Haufe, C. R.</au><au>Henning, R.</au><au>Hervas Aguilar, D.</au><au>Hoppe, E. W.</au><au>Hostiuc, A.</au><au>Kidd, M. F.</au><au>Kim, I.</au><au>Kouzes, R. T.</au><au>Lannen V., T. E.</au><au>Li, A.</au><au>López-Castaño, J. M.</au><au>Martin, E. L.</au><au>Martin, R. D.</au><au>Massarczyk, R.</au><au>Meijer, S. J.</au><au>Oli, T. K.</au><au>Othman, G.</au><au>Paudel, L. S.</au><au>Pettus, W.</au><au>Poon, A. W. P.</au><au>Radford, D. C.</au><au>Reine, A. L.</au><au>Rielage, K.</au><au>Ruof, N. W.</au><au>Schaper, D. C.</au><au>Tedeschi, D.</au><au>Varner, R. L.</au><au>Vasilyev, S.</au><au>Wilkerson, J. F.</au><au>Wiseman, C.</au><au>Xu, W.</au><au>Yu, C.-H.</au><aucorp>&lt;span class="sc"&gt;Majorana&lt;/span&gt; Collaboration</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable boosted-decision-tree analysis for the Majorana Demonstrator</atitle><jtitle>Physical review. C</jtitle><date>2023-01-25</date><risdate>2023</risdate><volume>107</volume><issue>1</issue><artnum>014321</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of information provided by these detectors, but the data-driven nature makes it less interpretable compared to traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn from the machine to feed back to the traditional analysis. In this work, we present the first machine learning analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn from the data, and a game-theory-based model interpretability study is conducted to understand the origin of the classification power. By learning from data, this analysis recognizes the correlations among reconstruction parameters to further enhance the background rejection performance. Here, by learning from the machine, this analysis reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis. This model is highly compatible with next-generation germanium detector experiments like LEGEND since it can be simultaneously trained on a large number of detectors.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.107.014321</doi><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000000283946613</orcidid><orcidid>https://orcid.org/0000000193619870</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000313722910</orcidid><orcidid>https://orcid.org/0000000180019235</orcidid><orcidid>https://orcid.org/0000000213660361</orcidid><orcidid>https://orcid.org/0000000273927152</orcidid><orcidid>https://orcid.org/0000000237772237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Physical review. C, 2023-01, Vol.107 (1), Article 014321
issn 2469-9985
2469-9993
language eng
recordid cdi_osti_scitechconnect_1976076
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects germanium
low-background physics
machine learning
neutrinoless double beta decay
NUCLEAR PHYSICS AND RADIATION PHYSICS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
solid-state detectors
title Interpretable boosted-decision-tree analysis for the Majorana Demonstrator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20boosted-decision-tree%20analysis%20for%20the%20Majorana%20Demonstrator&rft.jtitle=Physical%20review.%20C&rft.au=Arnquist,%20I.%20J.&rft.aucorp=%3Cspan%20class=%22sc%22%3EMajorana%3C/span%3E%20Collaboration&rft.date=2023-01-25&rft.volume=107&rft.issue=1&rft.artnum=014321&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.107.014321&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_107_014321%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271t-87ea3bd9361a6f7aca0a3166c0a5d7d4838b87a8df2519b165dea4036dddd173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true