Loading…

Toward reducing uncertainty quantification costs in DEM models of particulate flow: Testing simple, sensitivity-based, forward uncertainty propagation techniques

The performance of two conceptually-simple uncertainty quantification techniques are tested against the rigorous nested-loop sampling technique of Roy and Oberkampf (Comput Methods Appl Mech Eng, 200: 2131–2144, 2011) (herein called full-sampling) using two very small-scale DEM-based models of parti...

Full description

Saved in:
Bibliographic Details
Published in:Powder technology 2022-01, Vol.398 (C)
Main Authors: Dahl, Steven R., LaMarche, W. Casey Q., Liu, Peiyuan, Fullmer, William D., Hrenya, Christine M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue C
container_start_page
container_title Powder technology
container_volume 398
creator Dahl, Steven R.
LaMarche, W. Casey Q.
Liu, Peiyuan
Fullmer, William D.
Hrenya, Christine M.
description The performance of two conceptually-simple uncertainty quantification techniques are tested against the rigorous nested-loop sampling technique of Roy and Oberkampf (Comput Methods Appl Mech Eng, 200: 2131–2144, 2011) (herein called full-sampling) using two very small-scale DEM-based models of particulate flow (one gas-solid flow and one granular flow). The first simplified forward uncertainty propagation technique, reduced-sampling, uses a sensitivity analysis to eliminate uncertain inputs that have little impact on the model output prior to nested-loop sampling. The second technique, boundary-sampling, uses a sensitivity analysis to inform the selection of two bounding cases for each key model output. In conclusion, the uncertainties in the model outputs obtained via the reduced- and boundary-sampling methods agree well with those from full-sampling for both the gas-solid and granular flow models while yielding computational savings of 65–75% (reduced sampling) and 94–97% (boundary sampling).
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1977594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977594</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19775943</originalsourceid><addsrcrecordid>eNqNjjFOAzEQRS1EJBbCHUbUWckbEzZLC0E0dFvQRcY7DoMce-MZE-U43BQCFJRUv3n6752oqlm2pjbz5fOpqrQ283rRNfpMnTO_aa1vTKMr9dGnvc0DZByKo7iBEh1msRTlALtio5AnZ4VSBJdYGCjC_eoJtmnAwJA8jDYLuRKsIPiQ9rfQI8vxi2k7BpwBY2QSeic51C-WcZiBT_nb-1c35jTazY9L0L1G2hXkqZp4Gxgvf_dCXT2s-rvH-quG1uzoiLoUIzpZN13bLrpr8y_oE0IJYFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward reducing uncertainty quantification costs in DEM models of particulate flow: Testing simple, sensitivity-based, forward uncertainty propagation techniques</title><source>ScienceDirect Journals</source><creator>Dahl, Steven R. ; LaMarche, W. Casey Q. ; Liu, Peiyuan ; Fullmer, William D. ; Hrenya, Christine M.</creator><creatorcontrib>Dahl, Steven R. ; LaMarche, W. Casey Q. ; Liu, Peiyuan ; Fullmer, William D. ; Hrenya, Christine M. ; Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><description>The performance of two conceptually-simple uncertainty quantification techniques are tested against the rigorous nested-loop sampling technique of Roy and Oberkampf (Comput Methods Appl Mech Eng, 200: 2131–2144, 2011) (herein called full-sampling) using two very small-scale DEM-based models of particulate flow (one gas-solid flow and one granular flow). The first simplified forward uncertainty propagation technique, reduced-sampling, uses a sensitivity analysis to eliminate uncertain inputs that have little impact on the model output prior to nested-loop sampling. The second technique, boundary-sampling, uses a sensitivity analysis to inform the selection of two bounding cases for each key model output. In conclusion, the uncertainties in the model outputs obtained via the reduced- and boundary-sampling methods agree well with those from full-sampling for both the gas-solid and granular flow models while yielding computational savings of 65–75% (reduced sampling) and 94–97% (boundary sampling).</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>CFD-DEM ; DEM ; ENGINEERING ; Uncertainty quantification ; VV&amp;UQ</subject><ispartof>Powder technology, 2022-01, Vol.398 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1977594$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahl, Steven R.</creatorcontrib><creatorcontrib>LaMarche, W. Casey Q.</creatorcontrib><creatorcontrib>Liu, Peiyuan</creatorcontrib><creatorcontrib>Fullmer, William D.</creatorcontrib><creatorcontrib>Hrenya, Christine M.</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><title>Toward reducing uncertainty quantification costs in DEM models of particulate flow: Testing simple, sensitivity-based, forward uncertainty propagation techniques</title><title>Powder technology</title><description>The performance of two conceptually-simple uncertainty quantification techniques are tested against the rigorous nested-loop sampling technique of Roy and Oberkampf (Comput Methods Appl Mech Eng, 200: 2131–2144, 2011) (herein called full-sampling) using two very small-scale DEM-based models of particulate flow (one gas-solid flow and one granular flow). The first simplified forward uncertainty propagation technique, reduced-sampling, uses a sensitivity analysis to eliminate uncertain inputs that have little impact on the model output prior to nested-loop sampling. The second technique, boundary-sampling, uses a sensitivity analysis to inform the selection of two bounding cases for each key model output. In conclusion, the uncertainties in the model outputs obtained via the reduced- and boundary-sampling methods agree well with those from full-sampling for both the gas-solid and granular flow models while yielding computational savings of 65–75% (reduced sampling) and 94–97% (boundary sampling).</description><subject>CFD-DEM</subject><subject>DEM</subject><subject>ENGINEERING</subject><subject>Uncertainty quantification</subject><subject>VV&amp;UQ</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjjFOAzEQRS1EJBbCHUbUWckbEzZLC0E0dFvQRcY7DoMce-MZE-U43BQCFJRUv3n6752oqlm2pjbz5fOpqrQ283rRNfpMnTO_aa1vTKMr9dGnvc0DZByKo7iBEh1msRTlALtio5AnZ4VSBJdYGCjC_eoJtmnAwJA8jDYLuRKsIPiQ9rfQI8vxi2k7BpwBY2QSeic51C-WcZiBT_nb-1c35jTazY9L0L1G2hXkqZp4Gxgvf_dCXT2s-rvH-quG1uzoiLoUIzpZN13bLrpr8y_oE0IJYFw</recordid><startdate>20220120</startdate><enddate>20220120</enddate><creator>Dahl, Steven R.</creator><creator>LaMarche, W. Casey Q.</creator><creator>Liu, Peiyuan</creator><creator>Fullmer, William D.</creator><creator>Hrenya, Christine M.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20220120</creationdate><title>Toward reducing uncertainty quantification costs in DEM models of particulate flow: Testing simple, sensitivity-based, forward uncertainty propagation techniques</title><author>Dahl, Steven R. ; LaMarche, W. Casey Q. ; Liu, Peiyuan ; Fullmer, William D. ; Hrenya, Christine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19775943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CFD-DEM</topic><topic>DEM</topic><topic>ENGINEERING</topic><topic>Uncertainty quantification</topic><topic>VV&amp;UQ</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahl, Steven R.</creatorcontrib><creatorcontrib>LaMarche, W. Casey Q.</creatorcontrib><creatorcontrib>Liu, Peiyuan</creatorcontrib><creatorcontrib>Fullmer, William D.</creatorcontrib><creatorcontrib>Hrenya, Christine M.</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahl, Steven R.</au><au>LaMarche, W. Casey Q.</au><au>Liu, Peiyuan</au><au>Fullmer, William D.</au><au>Hrenya, Christine M.</au><aucorp>Univ. of Colorado, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward reducing uncertainty quantification costs in DEM models of particulate flow: Testing simple, sensitivity-based, forward uncertainty propagation techniques</atitle><jtitle>Powder technology</jtitle><date>2022-01-20</date><risdate>2022</risdate><volume>398</volume><issue>C</issue><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>The performance of two conceptually-simple uncertainty quantification techniques are tested against the rigorous nested-loop sampling technique of Roy and Oberkampf (Comput Methods Appl Mech Eng, 200: 2131–2144, 2011) (herein called full-sampling) using two very small-scale DEM-based models of particulate flow (one gas-solid flow and one granular flow). The first simplified forward uncertainty propagation technique, reduced-sampling, uses a sensitivity analysis to eliminate uncertain inputs that have little impact on the model output prior to nested-loop sampling. The second technique, boundary-sampling, uses a sensitivity analysis to inform the selection of two bounding cases for each key model output. In conclusion, the uncertainties in the model outputs obtained via the reduced- and boundary-sampling methods agree well with those from full-sampling for both the gas-solid and granular flow models while yielding computational savings of 65–75% (reduced sampling) and 94–97% (boundary sampling).</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2022-01, Vol.398 (C)
issn 0032-5910
1873-328X
language eng
recordid cdi_osti_scitechconnect_1977594
source ScienceDirect Journals
subjects CFD-DEM
DEM
ENGINEERING
Uncertainty quantification
VV&UQ
title Toward reducing uncertainty quantification costs in DEM models of particulate flow: Testing simple, sensitivity-based, forward uncertainty propagation techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20reducing%20uncertainty%20quantification%20costs%20in%20DEM%20models%20of%20particulate%20flow:%20Testing%20simple,%20sensitivity-based,%20forward%20uncertainty%20propagation%20techniques&rft.jtitle=Powder%20technology&rft.au=Dahl,%20Steven%20R.&rft.aucorp=Univ.%20of%20Colorado,%20Boulder,%20CO%20(United%20States)&rft.date=2022-01-20&rft.volume=398&rft.issue=C&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/&rft_dat=%3Costi%3E1977594%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19775943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true