Loading…

High-level coupled-cluster energetics by merging moment expansions with selected configuration interaction

Inspired by our earlier semi-stochastic work aimed at converging high-level coupled-cluster (CC) energetics [J. E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017) and J. E. Deustua, J. Shen, and P. Piecuch, J. Chem. Phys. 154, 124103 (2021)], we propose a novel form of the CC(P...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-11, Vol.155 (17)
Main Authors: Gururangan, Karthik, Deustua, J. Emiliano, Shen, Jun, Piecuch, Piotr
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inspired by our earlier semi-stochastic work aimed at converging high-level coupled-cluster (CC) energetics [J. E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017) and J. E. Deustua, J. Shen, and P. Piecuch, J. Chem. Phys. 154, 124103 (2021)], we propose a novel form of the CC(P; Q) theory in which the stochastic Quantum Monte Carlo propagations, used to identify dominant higher-than-doubly excited determinants, are replaced by the selected configuration interaction (CI) approach using the perturbative selection made iteratively (CIPSI) algorithm. The advantages of the resulting CIPSI-driven CC(P; Q) methodology are illustrated by a few molecular examples, including the dissociation of F2 and the automerization of cyclobutadiene, where we recover the electronic energies corresponding to the CC calculations with a full treatment of singles, doubles, and triples based on the information extracted from compact CI wave functions originating from relatively inexpensive Hamiltonian diagonalizations.
ISSN:0021-9606
1089-7690