Loading…
Experimental study of electromagnetic wave scattering from a gyrotropic gaseous plasma column
We experimentally demonstrate the controlled scattering of incident transverse-electric electromagnetic waves from a gyrotropic magnetized plasma cylindrical discharge. Scattered electromagnetic waves can bend left and right by changing the external magnetic field of a plasma rod. Measured scattered...
Saved in:
Published in: | Applied physics letters 2022-05, Vol.120 (22) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We experimentally demonstrate the controlled scattering of incident transverse-electric electromagnetic waves from a gyrotropic magnetized plasma cylindrical discharge. Scattered electromagnetic waves can bend left and right by changing the external magnetic field of a plasma rod. Measured scattered wavefronts are in good agreement with electromagnetic simulations. A gyrotropic response is observed for incident wave frequencies ranging from 3.5 to 5.6 GHz for conditions corresponding to a ratio of cyclotron frequency to plasma frequency,
ω
c
e
/
ω
p
≈ 0.16. The observation of a gyrotropic response from cylindrical plasma discharges paves the way for their use as building blocks for future devices such as magnetized plasma photonic crystals, topological insulators, plasma metamaterials, non-reciprocal waveguide structures, and other devices, which require a tunable gyrotropic response from centimeter to meter-scale materials with application-specific geometry. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0095038 |