Loading…
Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen
Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures wher...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-06, Vol.119 (26) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 26 |
container_start_page | |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Song, Xianqi Liu, Chang Li, Quan Hemley, Russell J. Ma, Yanming Chen, Changfeng |
description | Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1979169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979169</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19791693</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMoWD93CO4Daa1tA6ILUXRt96UkzyaSJpKXCt5eBQ_gahYzzIgkKRcpK3LBxyThPCtZlWf5lMwQ75xzsal4Qi7XGACRGacGCYpq02lWy-0e-h3F4QFB-q-K5mniixpH0VujaO8tyMG2geqXCr4DtyCTW2sRlj_Oyep0rA9n5jGaBqWJIPVn5kDGJhWlSAux_it6A0bmPjs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen</title><source>PubMed Central</source><creator>Song, Xianqi ; Liu, Chang ; Li, Quan ; Hemley, Russell J. ; Ma, Yanming ; Chen, Changfeng</creator><creatorcontrib>Song, Xianqi ; Liu, Chang ; Li, Quan ; Hemley, Russell J. ; Ma, Yanming ; Chen, Changfeng ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>anisotropic stresses ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; first-principles calculations ; high pressure ; metallic hydrogen ; superconductivity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-06, Vol.119 (26)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000247585865 ; 0000000337110011 ; 0000000173988521 ; 0000000277241289 ; 0000000308241098 ; 0000000261101118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1979169$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Xianqi</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Ma, Yanming</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.</description><subject>anisotropic stresses</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>first-principles calculations</subject><subject>high pressure</subject><subject>metallic hydrogen</subject><subject>superconductivity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjEsKwjAUAIMoWD93CO4Daa1tA6ILUXRt96UkzyaSJpKXCt5eBQ_gahYzzIgkKRcpK3LBxyThPCtZlWf5lMwQ75xzsal4Qi7XGACRGacGCYpq02lWy-0e-h3F4QFB-q-K5mniixpH0VujaO8tyMG2geqXCr4DtyCTW2sRlj_Oyep0rA9n5jGaBqWJIPVn5kDGJhWlSAux_it6A0bmPjs</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Song, Xianqi</creator><creator>Liu, Chang</creator><creator>Li, Quan</creator><creator>Hemley, Russell J.</creator><creator>Ma, Yanming</creator><creator>Chen, Changfeng</creator><general>National Academy of Sciences</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000247585865</orcidid><orcidid>https://orcid.org/0000000337110011</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid><orcidid>https://orcid.org/0000000308241098</orcidid><orcidid>https://orcid.org/0000000261101118</orcidid></search><sort><creationdate>20220624</creationdate><title>Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen</title><author>Song, Xianqi ; Liu, Chang ; Li, Quan ; Hemley, Russell J. ; Ma, Yanming ; Chen, Changfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19791693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anisotropic stresses</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>first-principles calculations</topic><topic>high pressure</topic><topic>metallic hydrogen</topic><topic>superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xianqi</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Ma, Yanming</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xianqi</au><au>Liu, Chang</au><au>Li, Quan</au><au>Hemley, Russell J.</au><au>Ma, Yanming</au><au>Chen, Changfeng</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2022-06-24</date><risdate>2022</risdate><volume>119</volume><issue>26</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><orcidid>https://orcid.org/0000000247585865</orcidid><orcidid>https://orcid.org/0000000337110011</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid><orcidid>https://orcid.org/0000000308241098</orcidid><orcidid>https://orcid.org/0000000261101118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-06, Vol.119 (26) |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_osti_scitechconnect_1979169 |
source | PubMed Central |
subjects | anisotropic stresses CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY first-principles calculations high pressure metallic hydrogen superconductivity |
title | Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress-induced%20high-Tc%3C?em%3E%20superconductivity%20in%20solid%20molecular%20hydrogen&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Song,%20Xianqi&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2022-06-24&rft.volume=119&rft.issue=26&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Costi%3E1979169%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19791693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |