Loading…

Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen

Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures wher...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2022-06, Vol.119 (26)
Main Authors: Song, Xianqi, Liu, Chang, Li, Quan, Hemley, Russell J., Ma, Yanming, Chen, Changfeng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 26
container_start_page
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Song, Xianqi
Liu, Chang
Li, Quan
Hemley, Russell J.
Ma, Yanming
Chen, Changfeng
description Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1979169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979169</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19791693</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMoWD93CO4Daa1tA6ILUXRt96UkzyaSJpKXCt5eBQ_gahYzzIgkKRcpK3LBxyThPCtZlWf5lMwQ75xzsal4Qi7XGACRGacGCYpq02lWy-0e-h3F4QFB-q-K5mniixpH0VujaO8tyMG2geqXCr4DtyCTW2sRlj_Oyep0rA9n5jGaBqWJIPVn5kDGJhWlSAux_it6A0bmPjs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stress-induced high-Tc&lt;?em&gt; superconductivity in solid molecular hydrogen</title><source>PubMed Central</source><creator>Song, Xianqi ; Liu, Chang ; Li, Quan ; Hemley, Russell J. ; Ma, Yanming ; Chen, Changfeng</creator><creatorcontrib>Song, Xianqi ; Liu, Chang ; Li, Quan ; Hemley, Russell J. ; Ma, Yanming ; Chen, Changfeng ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>anisotropic stresses ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; first-principles calculations ; high pressure ; metallic hydrogen ; superconductivity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-06, Vol.119 (26)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000247585865 ; 0000000337110011 ; 0000000173988521 ; 0000000277241289 ; 0000000308241098 ; 0000000261101118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1979169$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Xianqi</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Ma, Yanming</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Stress-induced high-Tc&lt;?em&gt; superconductivity in solid molecular hydrogen</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.</description><subject>anisotropic stresses</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>first-principles calculations</subject><subject>high pressure</subject><subject>metallic hydrogen</subject><subject>superconductivity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjEsKwjAUAIMoWD93CO4Daa1tA6ILUXRt96UkzyaSJpKXCt5eBQ_gahYzzIgkKRcpK3LBxyThPCtZlWf5lMwQ75xzsal4Qi7XGACRGacGCYpq02lWy-0e-h3F4QFB-q-K5mniixpH0VujaO8tyMG2geqXCr4DtyCTW2sRlj_Oyep0rA9n5jGaBqWJIPVn5kDGJhWlSAux_it6A0bmPjs</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Song, Xianqi</creator><creator>Liu, Chang</creator><creator>Li, Quan</creator><creator>Hemley, Russell J.</creator><creator>Ma, Yanming</creator><creator>Chen, Changfeng</creator><general>National Academy of Sciences</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000247585865</orcidid><orcidid>https://orcid.org/0000000337110011</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid><orcidid>https://orcid.org/0000000308241098</orcidid><orcidid>https://orcid.org/0000000261101118</orcidid></search><sort><creationdate>20220624</creationdate><title>Stress-induced high-Tc&lt;?em&gt; superconductivity in solid molecular hydrogen</title><author>Song, Xianqi ; Liu, Chang ; Li, Quan ; Hemley, Russell J. ; Ma, Yanming ; Chen, Changfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19791693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anisotropic stresses</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>first-principles calculations</topic><topic>high pressure</topic><topic>metallic hydrogen</topic><topic>superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xianqi</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Ma, Yanming</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xianqi</au><au>Liu, Chang</au><au>Li, Quan</au><au>Hemley, Russell J.</au><au>Ma, Yanming</au><au>Chen, Changfeng</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress-induced high-Tc&lt;?em&gt; superconductivity in solid molecular hydrogen</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2022-06-24</date><risdate>2022</risdate><volume>119</volume><issue>26</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. In this report we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><orcidid>https://orcid.org/0000000247585865</orcidid><orcidid>https://orcid.org/0000000337110011</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid><orcidid>https://orcid.org/0000000308241098</orcidid><orcidid>https://orcid.org/0000000261101118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-06, Vol.119 (26)
issn 0027-8424
1091-6490
language eng
recordid cdi_osti_scitechconnect_1979169
source PubMed Central
subjects anisotropic stresses
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
first-principles calculations
high pressure
metallic hydrogen
superconductivity
title Stress-induced high-Tc<?em> superconductivity in solid molecular hydrogen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress-induced%20high-Tc%3C?em%3E%20superconductivity%20in%20solid%20molecular%20hydrogen&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Song,%20Xianqi&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2022-06-24&rft.volume=119&rft.issue=26&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Costi%3E1979169%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19791693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true