Loading…
Quasiparticle Scattering in a Superconductor near a Nematic Critical Point: Resonance Mode and Multiple Attractive Channels
We analyze the scattering rate for 2D fermions interacting via soft nematic fluctuations. The ground state is an s-wave superconductor, but other pairing channels are almost equally attractive. This strongly alters the scattering rate: At energies beyond the pairing gap Δ, it is renormalized by cont...
Saved in:
Published in: | Physical review letters 2022-01, Vol.128 (1), p.017001-017001, Article 017001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze the scattering rate for 2D fermions interacting via soft nematic fluctuations. The ground state is an s-wave superconductor, but other pairing channels are almost equally attractive. This strongly alters the scattering rate: At energies beyond the pairing gap Δ, it is renormalized by contributions from all pairing channels. At energies of order Δ, it is determined by the competition between scattering into a gapped continuum and dispersing nematic resonance. The outcome is a "peak-peak-dip-hump" spectrum, similar, but not identical, to the "peak-dip-hump" structure in the cuprates. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.128.017001 |