Loading…
Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters
Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corro...
Saved in:
Published in: | JOM (1989) 2022-04, Vol.74 (4), p.1719-1729 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3 |
container_end_page | 1729 |
container_issue | 4 |
container_start_page | 1719 |
container_title | JOM (1989) |
container_volume | 74 |
creator | Sopcisak, Joseph J. Ouyang, Mingxi Macatangay, Duane A. Croom, Brendan P. Montalbano, Timothy J. Sprouster, David J. Kelly, Robert G. Trelewicz, Jason R. Srinivasan, Rengaswamy Storck, Steven M. |
description | Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state. |
doi_str_mv | 10.1007/s11837-022-05207-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1981506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645225745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhpfSQt20L9CTaM7baLSr1e7RmKQN2NiQpFchSyNHYXflSHIgeYe8c2VvILec5of5v5lh_qL4CfQ3UCouIkBbiZIyVlLOqCjhUzEDXlcltBw-Z01rUdZt1X4tvsX4QDNUdzArXq-HffBPbtyRdI9k41I66oUPwUfnR7LBYH0Y1KiReEvmxrjknrB_Jis1HqzS6RDQkAqaJblJiD355xRZ75Mb3Etu3GCP-kiQpYoYyAr704ZN8BpjPEkV1IAJQ_xefLGqj_jjrZ4Vd1eXt4u_5XL953oxX5a6qptUIija2kZrTikHJigDY5nJvdYYo0Sn9dYobISpuhYbI4Sgltdb1oFlzOrqrPg1zfUxORm1S6jvtR_HfKqErgVOm2w6n0z5QY8HjEk--EMY812SNTVnjIuaZxebXDo_LAa0ch_coMKzBCqP2cgpG5mzkadsJGSomqCYzeMOw_voD6j_rbWTTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645225745</pqid></control><display><type>article</type><title>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</title><source>Springer Nature</source><creator>Sopcisak, Joseph J. ; Ouyang, Mingxi ; Macatangay, Duane A. ; Croom, Brendan P. ; Montalbano, Timothy J. ; Sprouster, David J. ; Kelly, Robert G. ; Trelewicz, Jason R. ; Srinivasan, Rengaswamy ; Storck, Steven M.</creator><creatorcontrib>Sopcisak, Joseph J. ; Ouyang, Mingxi ; Macatangay, Duane A. ; Croom, Brendan P. ; Montalbano, Timothy J. ; Sprouster, David J. ; Kelly, Robert G. ; Trelewicz, Jason R. ; Srinivasan, Rengaswamy ; Storck, Steven M. ; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><description>Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-022-05207-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Alloys ; Anodizing ; Austenitic stainless steels ; Chemistry/Food Science ; Corrosion potential ; Corrosion resistance ; Corrosion resistant steels ; Earth Sciences ; Electrodes ; Energy ; Engineering ; Environment ; Environmental Degradation of Additively Manufactured Alloys ; Flux density ; Free form ; Laser beam melting ; Laser processing ; Lasers ; Materials Science ; Mechanical properties ; Metallurgy & Metallurgical Engineering ; Microstructure ; Mineralogy ; Mining & Mineral Processing ; Oxidation ; Physics ; Pitting (corrosion) ; Powder beds ; Process parameters ; Rapid prototyping ; Residual stress ; Sensors ; Stainless steel ; Velocity</subject><ispartof>JOM (1989), 2022-04, Vol.74 (4), p.1719-1729</ispartof><rights>The Minerals, Metals & Materials Society 2022</rights><rights>Copyright Springer Nature B.V. Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</citedby><cites>FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1981506$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sopcisak, Joseph J.</creatorcontrib><creatorcontrib>Ouyang, Mingxi</creatorcontrib><creatorcontrib>Macatangay, Duane A.</creatorcontrib><creatorcontrib>Croom, Brendan P.</creatorcontrib><creatorcontrib>Montalbano, Timothy J.</creatorcontrib><creatorcontrib>Sprouster, David J.</creatorcontrib><creatorcontrib>Kelly, Robert G.</creatorcontrib><creatorcontrib>Trelewicz, Jason R.</creatorcontrib><creatorcontrib>Srinivasan, Rengaswamy</creatorcontrib><creatorcontrib>Storck, Steven M.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><title>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.</description><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Anodizing</subject><subject>Austenitic stainless steels</subject><subject>Chemistry/Food Science</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Earth Sciences</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Degradation of Additively Manufactured Alloys</subject><subject>Flux density</subject><subject>Free form</subject><subject>Laser beam melting</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Microstructure</subject><subject>Mineralogy</subject><subject>Mining & Mineral Processing</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Pitting (corrosion)</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Rapid prototyping</subject><subject>Residual stress</subject><subject>Sensors</subject><subject>Stainless steel</subject><subject>Velocity</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqGzEQhpfSQt20L9CTaM7baLSr1e7RmKQN2NiQpFchSyNHYXflSHIgeYe8c2VvILec5of5v5lh_qL4CfQ3UCouIkBbiZIyVlLOqCjhUzEDXlcltBw-Z01rUdZt1X4tvsX4QDNUdzArXq-HffBPbtyRdI9k41I66oUPwUfnR7LBYH0Y1KiReEvmxrjknrB_Jis1HqzS6RDQkAqaJblJiD355xRZ75Mb3Etu3GCP-kiQpYoYyAr704ZN8BpjPEkV1IAJQ_xefLGqj_jjrZ4Vd1eXt4u_5XL953oxX5a6qptUIija2kZrTikHJigDY5nJvdYYo0Sn9dYobISpuhYbI4Sgltdb1oFlzOrqrPg1zfUxORm1S6jvtR_HfKqErgVOm2w6n0z5QY8HjEk--EMY812SNTVnjIuaZxebXDo_LAa0ch_coMKzBCqP2cgpG5mzkadsJGSomqCYzeMOw_voD6j_rbWTTQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Sopcisak, Joseph J.</creator><creator>Ouyang, Mingxi</creator><creator>Macatangay, Duane A.</creator><creator>Croom, Brendan P.</creator><creator>Montalbano, Timothy J.</creator><creator>Sprouster, David J.</creator><creator>Kelly, Robert G.</creator><creator>Trelewicz, Jason R.</creator><creator>Srinivasan, Rengaswamy</creator><creator>Storck, Steven M.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20220401</creationdate><title>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</title><author>Sopcisak, Joseph J. ; Ouyang, Mingxi ; Macatangay, Duane A. ; Croom, Brendan P. ; Montalbano, Timothy J. ; Sprouster, David J. ; Kelly, Robert G. ; Trelewicz, Jason R. ; Srinivasan, Rengaswamy ; Storck, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Anodizing</topic><topic>Austenitic stainless steels</topic><topic>Chemistry/Food Science</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Earth Sciences</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Degradation of Additively Manufactured Alloys</topic><topic>Flux density</topic><topic>Free form</topic><topic>Laser beam melting</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Microstructure</topic><topic>Mineralogy</topic><topic>Mining & Mineral Processing</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Pitting (corrosion)</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Rapid prototyping</topic><topic>Residual stress</topic><topic>Sensors</topic><topic>Stainless steel</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sopcisak, Joseph J.</creatorcontrib><creatorcontrib>Ouyang, Mingxi</creatorcontrib><creatorcontrib>Macatangay, Duane A.</creatorcontrib><creatorcontrib>Croom, Brendan P.</creatorcontrib><creatorcontrib>Montalbano, Timothy J.</creatorcontrib><creatorcontrib>Sprouster, David J.</creatorcontrib><creatorcontrib>Kelly, Robert G.</creatorcontrib><creatorcontrib>Trelewicz, Jason R.</creatorcontrib><creatorcontrib>Srinivasan, Rengaswamy</creatorcontrib><creatorcontrib>Storck, Steven M.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials science collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sopcisak, Joseph J.</au><au>Ouyang, Mingxi</au><au>Macatangay, Duane A.</au><au>Croom, Brendan P.</au><au>Montalbano, Timothy J.</au><au>Sprouster, David J.</au><au>Kelly, Robert G.</au><au>Trelewicz, Jason R.</au><au>Srinivasan, Rengaswamy</au><au>Storck, Steven M.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>74</volume><issue>4</issue><spage>1719</spage><epage>1729</epage><pages>1719-1729</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-022-05207-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2022-04, Vol.74 (4), p.1719-1729 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_osti_scitechconnect_1981506 |
source | Springer Nature |
subjects | Additive manufacturing Alloys Anodizing Austenitic stainless steels Chemistry/Food Science Corrosion potential Corrosion resistance Corrosion resistant steels Earth Sciences Electrodes Energy Engineering Environment Environmental Degradation of Additively Manufactured Alloys Flux density Free form Laser beam melting Laser processing Lasers Materials Science Mechanical properties Metallurgy & Metallurgical Engineering Microstructure Mineralogy Mining & Mineral Processing Oxidation Physics Pitting (corrosion) Powder beds Process parameters Rapid prototyping Residual stress Sensors Stainless steel Velocity |
title | Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Pitting%20Corrosion%20Performance%20of%20Additively%20Manufactured%20316L%20Steel%20Via%20Optimized%20Selective%20Laser%20Melting%20Processing%20Parameters&rft.jtitle=JOM%20(1989)&rft.au=Sopcisak,%20Joseph%20J.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2022-04-01&rft.volume=74&rft.issue=4&rft.spage=1719&rft.epage=1729&rft.pages=1719-1729&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-022-05207-1&rft_dat=%3Cproquest_osti_%3E2645225745%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645225745&rft_id=info:pmid/&rfr_iscdi=true |