Loading…

Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters

Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corro...

Full description

Saved in:
Bibliographic Details
Published in:JOM (1989) 2022-04, Vol.74 (4), p.1719-1729
Main Authors: Sopcisak, Joseph J., Ouyang, Mingxi, Macatangay, Duane A., Croom, Brendan P., Montalbano, Timothy J., Sprouster, David J., Kelly, Robert G., Trelewicz, Jason R., Srinivasan, Rengaswamy, Storck, Steven M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3
cites cdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3
container_end_page 1729
container_issue 4
container_start_page 1719
container_title JOM (1989)
container_volume 74
creator Sopcisak, Joseph J.
Ouyang, Mingxi
Macatangay, Duane A.
Croom, Brendan P.
Montalbano, Timothy J.
Sprouster, David J.
Kelly, Robert G.
Trelewicz, Jason R.
Srinivasan, Rengaswamy
Storck, Steven M.
description Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.
doi_str_mv 10.1007/s11837-022-05207-1
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1981506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645225745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhpfSQt20L9CTaM7baLSr1e7RmKQN2NiQpFchSyNHYXflSHIgeYe8c2VvILec5of5v5lh_qL4CfQ3UCouIkBbiZIyVlLOqCjhUzEDXlcltBw-Z01rUdZt1X4tvsX4QDNUdzArXq-HffBPbtyRdI9k41I66oUPwUfnR7LBYH0Y1KiReEvmxrjknrB_Jis1HqzS6RDQkAqaJblJiD355xRZ75Mb3Etu3GCP-kiQpYoYyAr704ZN8BpjPEkV1IAJQ_xefLGqj_jjrZ4Vd1eXt4u_5XL953oxX5a6qptUIija2kZrTikHJigDY5nJvdYYo0Sn9dYobISpuhYbI4Sgltdb1oFlzOrqrPg1zfUxORm1S6jvtR_HfKqErgVOm2w6n0z5QY8HjEk--EMY812SNTVnjIuaZxebXDo_LAa0ch_coMKzBCqP2cgpG5mzkadsJGSomqCYzeMOw_voD6j_rbWTTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645225745</pqid></control><display><type>article</type><title>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</title><source>Springer Nature</source><creator>Sopcisak, Joseph J. ; Ouyang, Mingxi ; Macatangay, Duane A. ; Croom, Brendan P. ; Montalbano, Timothy J. ; Sprouster, David J. ; Kelly, Robert G. ; Trelewicz, Jason R. ; Srinivasan, Rengaswamy ; Storck, Steven M.</creator><creatorcontrib>Sopcisak, Joseph J. ; Ouyang, Mingxi ; Macatangay, Duane A. ; Croom, Brendan P. ; Montalbano, Timothy J. ; Sprouster, David J. ; Kelly, Robert G. ; Trelewicz, Jason R. ; Srinivasan, Rengaswamy ; Storck, Steven M. ; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><description>Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-022-05207-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Alloys ; Anodizing ; Austenitic stainless steels ; Chemistry/Food Science ; Corrosion potential ; Corrosion resistance ; Corrosion resistant steels ; Earth Sciences ; Electrodes ; Energy ; Engineering ; Environment ; Environmental Degradation of Additively Manufactured Alloys ; Flux density ; Free form ; Laser beam melting ; Laser processing ; Lasers ; Materials Science ; Mechanical properties ; Metallurgy &amp; Metallurgical Engineering ; Microstructure ; Mineralogy ; Mining &amp; Mineral Processing ; Oxidation ; Physics ; Pitting (corrosion) ; Powder beds ; Process parameters ; Rapid prototyping ; Residual stress ; Sensors ; Stainless steel ; Velocity</subject><ispartof>JOM (1989), 2022-04, Vol.74 (4), p.1719-1729</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022</rights><rights>Copyright Springer Nature B.V. Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</citedby><cites>FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1981506$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sopcisak, Joseph J.</creatorcontrib><creatorcontrib>Ouyang, Mingxi</creatorcontrib><creatorcontrib>Macatangay, Duane A.</creatorcontrib><creatorcontrib>Croom, Brendan P.</creatorcontrib><creatorcontrib>Montalbano, Timothy J.</creatorcontrib><creatorcontrib>Sprouster, David J.</creatorcontrib><creatorcontrib>Kelly, Robert G.</creatorcontrib><creatorcontrib>Trelewicz, Jason R.</creatorcontrib><creatorcontrib>Srinivasan, Rengaswamy</creatorcontrib><creatorcontrib>Storck, Steven M.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><title>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.</description><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Anodizing</subject><subject>Austenitic stainless steels</subject><subject>Chemistry/Food Science</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Earth Sciences</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental Degradation of Additively Manufactured Alloys</subject><subject>Flux density</subject><subject>Free form</subject><subject>Laser beam melting</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Microstructure</subject><subject>Mineralogy</subject><subject>Mining &amp; Mineral Processing</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Pitting (corrosion)</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Rapid prototyping</subject><subject>Residual stress</subject><subject>Sensors</subject><subject>Stainless steel</subject><subject>Velocity</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqGzEQhpfSQt20L9CTaM7baLSr1e7RmKQN2NiQpFchSyNHYXflSHIgeYe8c2VvILec5of5v5lh_qL4CfQ3UCouIkBbiZIyVlLOqCjhUzEDXlcltBw-Z01rUdZt1X4tvsX4QDNUdzArXq-HffBPbtyRdI9k41I66oUPwUfnR7LBYH0Y1KiReEvmxrjknrB_Jis1HqzS6RDQkAqaJblJiD355xRZ75Mb3Etu3GCP-kiQpYoYyAr704ZN8BpjPEkV1IAJQ_xefLGqj_jjrZ4Vd1eXt4u_5XL953oxX5a6qptUIija2kZrTikHJigDY5nJvdYYo0Sn9dYobISpuhYbI4Sgltdb1oFlzOrqrPg1zfUxORm1S6jvtR_HfKqErgVOm2w6n0z5QY8HjEk--EMY812SNTVnjIuaZxebXDo_LAa0ch_coMKzBCqP2cgpG5mzkadsJGSomqCYzeMOw_voD6j_rbWTTQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Sopcisak, Joseph J.</creator><creator>Ouyang, Mingxi</creator><creator>Macatangay, Duane A.</creator><creator>Croom, Brendan P.</creator><creator>Montalbano, Timothy J.</creator><creator>Sprouster, David J.</creator><creator>Kelly, Robert G.</creator><creator>Trelewicz, Jason R.</creator><creator>Srinivasan, Rengaswamy</creator><creator>Storck, Steven M.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20220401</creationdate><title>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</title><author>Sopcisak, Joseph J. ; Ouyang, Mingxi ; Macatangay, Duane A. ; Croom, Brendan P. ; Montalbano, Timothy J. ; Sprouster, David J. ; Kelly, Robert G. ; Trelewicz, Jason R. ; Srinivasan, Rengaswamy ; Storck, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Anodizing</topic><topic>Austenitic stainless steels</topic><topic>Chemistry/Food Science</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Earth Sciences</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental Degradation of Additively Manufactured Alloys</topic><topic>Flux density</topic><topic>Free form</topic><topic>Laser beam melting</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Microstructure</topic><topic>Mineralogy</topic><topic>Mining &amp; Mineral Processing</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Pitting (corrosion)</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Rapid prototyping</topic><topic>Residual stress</topic><topic>Sensors</topic><topic>Stainless steel</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sopcisak, Joseph J.</creatorcontrib><creatorcontrib>Ouyang, Mingxi</creatorcontrib><creatorcontrib>Macatangay, Duane A.</creatorcontrib><creatorcontrib>Croom, Brendan P.</creatorcontrib><creatorcontrib>Montalbano, Timothy J.</creatorcontrib><creatorcontrib>Sprouster, David J.</creatorcontrib><creatorcontrib>Kelly, Robert G.</creatorcontrib><creatorcontrib>Trelewicz, Jason R.</creatorcontrib><creatorcontrib>Srinivasan, Rengaswamy</creatorcontrib><creatorcontrib>Storck, Steven M.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials science collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sopcisak, Joseph J.</au><au>Ouyang, Mingxi</au><au>Macatangay, Duane A.</au><au>Croom, Brendan P.</au><au>Montalbano, Timothy J.</au><au>Sprouster, David J.</au><au>Kelly, Robert G.</au><au>Trelewicz, Jason R.</au><au>Srinivasan, Rengaswamy</au><au>Storck, Steven M.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>74</volume><issue>4</issue><spage>1719</spage><epage>1729</epage><pages>1719-1729</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-022-05207-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2022-04, Vol.74 (4), p.1719-1729
issn 1047-4838
1543-1851
language eng
recordid cdi_osti_scitechconnect_1981506
source Springer Nature
subjects Additive manufacturing
Alloys
Anodizing
Austenitic stainless steels
Chemistry/Food Science
Corrosion potential
Corrosion resistance
Corrosion resistant steels
Earth Sciences
Electrodes
Energy
Engineering
Environment
Environmental Degradation of Additively Manufactured Alloys
Flux density
Free form
Laser beam melting
Laser processing
Lasers
Materials Science
Mechanical properties
Metallurgy & Metallurgical Engineering
Microstructure
Mineralogy
Mining & Mineral Processing
Oxidation
Physics
Pitting (corrosion)
Powder beds
Process parameters
Rapid prototyping
Residual stress
Sensors
Stainless steel
Velocity
title Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Pitting%20Corrosion%20Performance%20of%20Additively%20Manufactured%20316L%20Steel%20Via%20Optimized%20Selective%20Laser%20Melting%20Processing%20Parameters&rft.jtitle=JOM%20(1989)&rft.au=Sopcisak,%20Joseph%20J.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2022-04-01&rft.volume=74&rft.issue=4&rft.spage=1719&rft.epage=1729&rft.pages=1719-1729&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-022-05207-1&rft_dat=%3Cproquest_osti_%3E2645225745%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-e1a08f6cc5005127021df2d3468ddda79ccbdae67d398e6d7770f54b291f22fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645225745&rft_id=info:pmid/&rfr_iscdi=true