Loading…

Removal of impurity Metals as Phosphates from Lithium-ion Battery leachates

Recovery of critical materials from end-of life (EOL) lithium-ion batteries (LIB) is gaining interest as demands for materials grows. Hydrometallurgical processes start with an intermediate product known as black mass which contains critical materials of interest (Co, Ni, Li, and graphite) as well a...

Full description

Saved in:
Bibliographic Details
Published in:Hydrometallurgy 2023-02, Vol.217
Main Authors: Klaehn, John R., Shi, Meng, Aldana Diaz, Luis A., Molina Montes de Oca, Daniel Ernesto, Reich, Sabrina M., Palasyuk, Olena, Repukaiti, Reyixiati, Lister, Tedd E.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recovery of critical materials from end-of life (EOL) lithium-ion batteries (LIB) is gaining interest as demands for materials grows. Hydrometallurgical processes start with an intermediate product known as black mass which contains critical materials of interest (Co, Ni, Li, and graphite) as well as impurities such as Cu, Al, and Fe. These impurities are deleterious to downstream separation processes, as well as impact functionality of the final products. Here, these impurities effectively compete with most solvent extraction (SX) and metal recovery processes to diminish the overall yields of the desired materials. In this work, a process flowsheet is presented where a previously reported electrochemical leaching (ECL) process is followed by selective precipitation using diammonium hydrogen phosphate (DAP) to remove Cu, Al, and Fe from LIB leachate solutions. The electrochemical leach process removes Cu and produces a pH-adjusted leachate, ca. pH 2, without requiring an extra Cu extraction step. The addition of the precipitant DAP to leachate by slightly adjusting the pH to 3–4 at 45 °C, precipitates 95–99% of Al and Fe as their phosphates and the leachate retains >95% of Co, Ni and Li. After the filtration of phosphate impurities, the solution is ready for further processing, such as SX. As an unexpected result from the leachate processing, 20–30% of the Ni and Co co-crystalize as the double salt after cooling to room temperature, which could provide a shorter route to their recovery.
ISSN:0304-386X
1879-1158