Loading…

Plants cope with fluctuating light by frequency‐dependent nonphotochemical quenching and cyclic electron transport

Summary In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficientl...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2023-09, Vol.239 (5), p.1869-1886
Main Authors: Niu, Yuxi, Lazár, Dušan, Holzwarth, Alfred R., Kramer, David M., Matsubara, Shizue, Fiorani, Fabio, Poorter, Hendrik, Schrey, Silvia D., Nedbal, Ladislav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4153-2d2cb401ddaba157e98ac208d636d4e5be0a6bfc7e04c09597dcab45640616a43
cites cdi_FETCH-LOGICAL-c4153-2d2cb401ddaba157e98ac208d636d4e5be0a6bfc7e04c09597dcab45640616a43
container_end_page 1886
container_issue 5
container_start_page 1869
container_title The New phytologist
container_volume 239
creator Niu, Yuxi
Lazár, Dušan
Holzwarth, Alfred R.
Kramer, David M.
Matsubara, Shizue
Fiorani, Fabio
Poorter, Hendrik
Schrey, Silvia D.
Nedbal, Ladislav
description Summary In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild‐types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de‐epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2‐2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS‐regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de‐epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH‐like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de‐epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.
doi_str_mv 10.1111/nph.19083
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1989057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844450595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-2d2cb401ddaba157e98ac208d636d4e5be0a6bfc7e04c09597dcab45640616a43</originalsourceid><addsrcrecordid>eNp10b1u1TAUB_AIgeilMPACyIIFhrR2YjvxiCqgSBV0AInNco7PbVzl2sF2VGXjEXhGngS3KQxIePHy89_no6qeM3rCyjn183jCFO3bB9WOcanqnrXdw2pHadPXkstvR9WTlK4ppUrI5nF11Ha8UW3Dd1W-nIzPiUCYkdy4PJL9tEBeTHb-ikzuasxkWMk-4vcFPay_fvy0OKO36DPxofwccoARDw7MRO7MePvSeEtghckBwQkhx-BJjsanOcT8tHq0N1PCZ_f3cfX1_bsvZ-f1xecPH8_eXtTAmWjrxjYwcMqsNYNhokPVG2hob2UrLUcxIDVy2EOHlENpTXUWzMCF5FQyaXh7XL3cckPKTidwGWGE4H0pSDPVKyq6gl5vaI6h1J-yPrgEOJW5YFiSbvpWNYL3oi_01T_0OizRlxaK4pwLKpQo6s2mIIaUIu71HN3BxFUzqm_3pcvU9N2-in1xn7gMB7R_5Z8FFXC6gRs34fr_JP3p8nyL_A1Aw6IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844450595</pqid></control><display><type>article</type><title>Plants cope with fluctuating light by frequency‐dependent nonphotochemical quenching and cyclic electron transport</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Niu, Yuxi ; Lazár, Dušan ; Holzwarth, Alfred R. ; Kramer, David M. ; Matsubara, Shizue ; Fiorani, Fabio ; Poorter, Hendrik ; Schrey, Silvia D. ; Nedbal, Ladislav</creator><creatorcontrib>Niu, Yuxi ; Lazár, Dušan ; Holzwarth, Alfred R. ; Kramer, David M. ; Matsubara, Shizue ; Fiorani, Fabio ; Poorter, Hendrik ; Schrey, Silvia D. ; Nedbal, Ladislav ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>Summary In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild‐types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de‐epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2‐2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS‐regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de‐epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH‐like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de‐epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19083</identifier><identifier>PMID: 37429324</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Chlorophyll ; Chlorophyll - metabolism ; Chlorophylls ; cyclic electron transport ; Electron Transport ; Ferredoxin ; Fluorescence ; frequency analysis ; Frequency ranges ; Light ; Light-Harvesting Protein Complexes - metabolism ; Membrane Proteins - metabolism ; Mutants ; Mutation - genetics ; Natural environment ; nonphotochemical quenching ; Oscillations ; Photosynthesis ; Photosynthesis - physiology ; photosynthetic oscillation ; Photosynthetic Reaction Center Complex Proteins - genetics ; Photosystem I ; Photosystem II Protein Complex - metabolism ; Plastocyanin ; Quenching ; regulation ; Transport ; Violaxanthin ; Zeaxanthin</subject><ispartof>The New phytologist, 2023-09, Vol.239 (5), p.1869-1886</ispartof><rights>2023 The Authors. © 2023 New Phytologist Foundation</rights><rights>2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-2d2cb401ddaba157e98ac208d636d4e5be0a6bfc7e04c09597dcab45640616a43</citedby><cites>FETCH-LOGICAL-c4153-2d2cb401ddaba157e98ac208d636d4e5be0a6bfc7e04c09597dcab45640616a43</cites><orcidid>0000-0001-8775-1541 ; 0000-0002-9627-9864 ; 0000-0002-1440-6496 ; 0000-0001-5821-1968 ; 0000-0001-8035-4017 ; 0000-0001-9900-2433 ; 0000-0003-2181-6888 ; 0000-0002-4282-3406 ; 0000-0002-9562-4873 ; 0000000187751541 ; 0000000295624873 ; 0000000296279864 ; 0000000180354017 ; 0000000214406496 ; 0000000199002433 ; 0000000242823406 ; 0000000321816888 ; 0000000158211968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37429324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1989057$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Yuxi</creatorcontrib><creatorcontrib>Lazár, Dušan</creatorcontrib><creatorcontrib>Holzwarth, Alfred R.</creatorcontrib><creatorcontrib>Kramer, David M.</creatorcontrib><creatorcontrib>Matsubara, Shizue</creatorcontrib><creatorcontrib>Fiorani, Fabio</creatorcontrib><creatorcontrib>Poorter, Hendrik</creatorcontrib><creatorcontrib>Schrey, Silvia D.</creatorcontrib><creatorcontrib>Nedbal, Ladislav</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Plants cope with fluctuating light by frequency‐dependent nonphotochemical quenching and cyclic electron transport</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild‐types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de‐epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2‐2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS‐regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de‐epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH‐like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de‐epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.</description><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophylls</subject><subject>cyclic electron transport</subject><subject>Electron Transport</subject><subject>Ferredoxin</subject><subject>Fluorescence</subject><subject>frequency analysis</subject><subject>Frequency ranges</subject><subject>Light</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Mutants</subject><subject>Mutation - genetics</subject><subject>Natural environment</subject><subject>nonphotochemical quenching</subject><subject>Oscillations</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>photosynthetic oscillation</subject><subject>Photosynthetic Reaction Center Complex Proteins - genetics</subject><subject>Photosystem I</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Plastocyanin</subject><subject>Quenching</subject><subject>regulation</subject><subject>Transport</subject><subject>Violaxanthin</subject><subject>Zeaxanthin</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10b1u1TAUB_AIgeilMPACyIIFhrR2YjvxiCqgSBV0AInNco7PbVzl2sF2VGXjEXhGngS3KQxIePHy89_no6qeM3rCyjn183jCFO3bB9WOcanqnrXdw2pHadPXkstvR9WTlK4ppUrI5nF11Ha8UW3Dd1W-nIzPiUCYkdy4PJL9tEBeTHb-ikzuasxkWMk-4vcFPay_fvy0OKO36DPxofwccoARDw7MRO7MePvSeEtghckBwQkhx-BJjsanOcT8tHq0N1PCZ_f3cfX1_bsvZ-f1xecPH8_eXtTAmWjrxjYwcMqsNYNhokPVG2hob2UrLUcxIDVy2EOHlENpTXUWzMCF5FQyaXh7XL3cckPKTidwGWGE4H0pSDPVKyq6gl5vaI6h1J-yPrgEOJW5YFiSbvpWNYL3oi_01T_0OizRlxaK4pwLKpQo6s2mIIaUIu71HN3BxFUzqm_3pcvU9N2-in1xn7gMB7R_5Z8FFXC6gRs34fr_JP3p8nyL_A1Aw6IQ</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Niu, Yuxi</creator><creator>Lazár, Dušan</creator><creator>Holzwarth, Alfred R.</creator><creator>Kramer, David M.</creator><creator>Matsubara, Shizue</creator><creator>Fiorani, Fabio</creator><creator>Poorter, Hendrik</creator><creator>Schrey, Silvia D.</creator><creator>Nedbal, Ladislav</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8775-1541</orcidid><orcidid>https://orcid.org/0000-0002-9627-9864</orcidid><orcidid>https://orcid.org/0000-0002-1440-6496</orcidid><orcidid>https://orcid.org/0000-0001-5821-1968</orcidid><orcidid>https://orcid.org/0000-0001-8035-4017</orcidid><orcidid>https://orcid.org/0000-0001-9900-2433</orcidid><orcidid>https://orcid.org/0000-0003-2181-6888</orcidid><orcidid>https://orcid.org/0000-0002-4282-3406</orcidid><orcidid>https://orcid.org/0000-0002-9562-4873</orcidid><orcidid>https://orcid.org/0000000187751541</orcidid><orcidid>https://orcid.org/0000000295624873</orcidid><orcidid>https://orcid.org/0000000296279864</orcidid><orcidid>https://orcid.org/0000000180354017</orcidid><orcidid>https://orcid.org/0000000214406496</orcidid><orcidid>https://orcid.org/0000000199002433</orcidid><orcidid>https://orcid.org/0000000242823406</orcidid><orcidid>https://orcid.org/0000000321816888</orcidid><orcidid>https://orcid.org/0000000158211968</orcidid></search><sort><creationdate>202309</creationdate><title>Plants cope with fluctuating light by frequency‐dependent nonphotochemical quenching and cyclic electron transport</title><author>Niu, Yuxi ; Lazár, Dušan ; Holzwarth, Alfred R. ; Kramer, David M. ; Matsubara, Shizue ; Fiorani, Fabio ; Poorter, Hendrik ; Schrey, Silvia D. ; Nedbal, Ladislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-2d2cb401ddaba157e98ac208d636d4e5be0a6bfc7e04c09597dcab45640616a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophylls</topic><topic>cyclic electron transport</topic><topic>Electron Transport</topic><topic>Ferredoxin</topic><topic>Fluorescence</topic><topic>frequency analysis</topic><topic>Frequency ranges</topic><topic>Light</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Mutants</topic><topic>Mutation - genetics</topic><topic>Natural environment</topic><topic>nonphotochemical quenching</topic><topic>Oscillations</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>photosynthetic oscillation</topic><topic>Photosynthetic Reaction Center Complex Proteins - genetics</topic><topic>Photosystem I</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Plastocyanin</topic><topic>Quenching</topic><topic>regulation</topic><topic>Transport</topic><topic>Violaxanthin</topic><topic>Zeaxanthin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yuxi</creatorcontrib><creatorcontrib>Lazár, Dušan</creatorcontrib><creatorcontrib>Holzwarth, Alfred R.</creatorcontrib><creatorcontrib>Kramer, David M.</creatorcontrib><creatorcontrib>Matsubara, Shizue</creatorcontrib><creatorcontrib>Fiorani, Fabio</creatorcontrib><creatorcontrib>Poorter, Hendrik</creatorcontrib><creatorcontrib>Schrey, Silvia D.</creatorcontrib><creatorcontrib>Nedbal, Ladislav</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yuxi</au><au>Lazár, Dušan</au><au>Holzwarth, Alfred R.</au><au>Kramer, David M.</au><au>Matsubara, Shizue</au><au>Fiorani, Fabio</au><au>Poorter, Hendrik</au><au>Schrey, Silvia D.</au><au>Nedbal, Ladislav</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plants cope with fluctuating light by frequency‐dependent nonphotochemical quenching and cyclic electron transport</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-09</date><risdate>2023</risdate><volume>239</volume><issue>5</issue><spage>1869</spage><epage>1886</epage><pages>1869-1886</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild‐types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de‐epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2‐2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS‐regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de‐epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH‐like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de‐epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37429324</pmid><doi>10.1111/nph.19083</doi><tpages>1886</tpages><orcidid>https://orcid.org/0000-0001-8775-1541</orcidid><orcidid>https://orcid.org/0000-0002-9627-9864</orcidid><orcidid>https://orcid.org/0000-0002-1440-6496</orcidid><orcidid>https://orcid.org/0000-0001-5821-1968</orcidid><orcidid>https://orcid.org/0000-0001-8035-4017</orcidid><orcidid>https://orcid.org/0000-0001-9900-2433</orcidid><orcidid>https://orcid.org/0000-0003-2181-6888</orcidid><orcidid>https://orcid.org/0000-0002-4282-3406</orcidid><orcidid>https://orcid.org/0000-0002-9562-4873</orcidid><orcidid>https://orcid.org/0000000187751541</orcidid><orcidid>https://orcid.org/0000000295624873</orcidid><orcidid>https://orcid.org/0000000296279864</orcidid><orcidid>https://orcid.org/0000000180354017</orcidid><orcidid>https://orcid.org/0000000214406496</orcidid><orcidid>https://orcid.org/0000000199002433</orcidid><orcidid>https://orcid.org/0000000242823406</orcidid><orcidid>https://orcid.org/0000000321816888</orcidid><orcidid>https://orcid.org/0000000158211968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2023-09, Vol.239 (5), p.1869-1886
issn 0028-646X
1469-8137
language eng
recordid cdi_osti_scitechconnect_1989057
source Wiley-Blackwell Read & Publish Collection
subjects Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Chlorophyll
Chlorophyll - metabolism
Chlorophylls
cyclic electron transport
Electron Transport
Ferredoxin
Fluorescence
frequency analysis
Frequency ranges
Light
Light-Harvesting Protein Complexes - metabolism
Membrane Proteins - metabolism
Mutants
Mutation - genetics
Natural environment
nonphotochemical quenching
Oscillations
Photosynthesis
Photosynthesis - physiology
photosynthetic oscillation
Photosynthetic Reaction Center Complex Proteins - genetics
Photosystem I
Photosystem II Protein Complex - metabolism
Plastocyanin
Quenching
regulation
Transport
Violaxanthin
Zeaxanthin
title Plants cope with fluctuating light by frequency‐dependent nonphotochemical quenching and cyclic electron transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plants%20cope%20with%20fluctuating%20light%20by%20frequency%E2%80%90dependent%20nonphotochemical%20quenching%20and%20cyclic%20electron%20transport&rft.jtitle=The%20New%20phytologist&rft.au=Niu,%20Yuxi&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2023-09&rft.volume=239&rft.issue=5&rft.spage=1869&rft.epage=1886&rft.pages=1869-1886&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19083&rft_dat=%3Cproquest_osti_%3E2844450595%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4153-2d2cb401ddaba157e98ac208d636d4e5be0a6bfc7e04c09597dcab45640616a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844450595&rft_id=info:pmid/37429324&rfr_iscdi=true