Loading…
Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus
The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use...
Saved in:
Published in: | The journal of physical chemistry letters 2022-03, Vol.13 (10) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | The journal of physical chemistry letters |
container_volume | 13 |
creator | Chen, Dian-Teng Helms, Phillip Hale, Ashlyn R. Lee, Minseong Li, Chenghan Gray, Johnnie Christou, George Zapf, Vivien S. Chan, Garnet Kin-Lic Cheng, Hai-Ping |
description | The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1994130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994130</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19941303</originalsourceid><addsrcrecordid>eNqNjctKw1AQhg-iYLW-w-A-kNDYJmtJ7UYpNK7L4XRqR5M5YWaCN3wHH9mDuOjS1f_Bfztxk6Iuq2xRVDenR3zuLlSf83xe59Vi4r4flfgJVu8DShyMevrAHbTIGgUe0F6jvCh43sGSRC1bC3GgoUOFpsNgEpkCbEzGYKMgWIQN9WPnLfEBoXlLw9Qjm-9gnS5QjFI57n_tO_Js8HnPVfkFbZRRp-5s7zvFqz-9dNfLpr1dZVGNthrIMBxCZE7n26Kuy2KWz_4V-gFH5VjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Dian-Teng ; Helms, Phillip ; Hale, Ashlyn R. ; Lee, Minseong ; Li, Chenghan ; Gray, Johnnie ; Christou, George ; Zapf, Vivien S. ; Chan, Garnet Kin-Lic ; Cheng, Hai-Ping</creator><creatorcontrib>Chen, Dian-Teng ; Helms, Phillip ; Hale, Ashlyn R. ; Lee, Minseong ; Li, Chenghan ; Gray, Johnnie ; Christou, George ; Zapf, Vivien S. ; Chan, Garnet Kin-Lic ; Cheng, Hai-Ping ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>energy ; heat capacity ; high magnetic field science ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; magnetic properties ; quantum mechanics ; transition metals</subject><ispartof>The journal of physical chemistry letters, 2022-03, Vol.13 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000223699913 ; 0000000159235523 ; 0000000283754515 ; 0000000160959318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1994130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dian-Teng</creatorcontrib><creatorcontrib>Helms, Phillip</creatorcontrib><creatorcontrib>Hale, Ashlyn R.</creatorcontrib><creatorcontrib>Lee, Minseong</creatorcontrib><creatorcontrib>Li, Chenghan</creatorcontrib><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Christou, George</creatorcontrib><creatorcontrib>Zapf, Vivien S.</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</title><title>The journal of physical chemistry letters</title><description>The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.</description><subject>energy</subject><subject>heat capacity</subject><subject>high magnetic field science</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>magnetic properties</subject><subject>quantum mechanics</subject><subject>transition metals</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjctKw1AQhg-iYLW-w-A-kNDYJmtJ7UYpNK7L4XRqR5M5YWaCN3wHH9mDuOjS1f_Bfztxk6Iuq2xRVDenR3zuLlSf83xe59Vi4r4flfgJVu8DShyMevrAHbTIGgUe0F6jvCh43sGSRC1bC3GgoUOFpsNgEpkCbEzGYKMgWIQN9WPnLfEBoXlLw9Qjm-9gnS5QjFI57n_tO_Js8HnPVfkFbZRRp-5s7zvFqz-9dNfLpr1dZVGNthrIMBxCZE7n26Kuy2KWz_4V-gFH5VjA</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Chen, Dian-Teng</creator><creator>Helms, Phillip</creator><creator>Hale, Ashlyn R.</creator><creator>Lee, Minseong</creator><creator>Li, Chenghan</creator><creator>Gray, Johnnie</creator><creator>Christou, George</creator><creator>Zapf, Vivien S.</creator><creator>Chan, Garnet Kin-Lic</creator><creator>Cheng, Hai-Ping</creator><general>American Chemical Society</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000223699913</orcidid><orcidid>https://orcid.org/0000000159235523</orcidid><orcidid>https://orcid.org/0000000283754515</orcidid><orcidid>https://orcid.org/0000000160959318</orcidid></search><sort><creationdate>20220307</creationdate><title>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</title><author>Chen, Dian-Teng ; Helms, Phillip ; Hale, Ashlyn R. ; Lee, Minseong ; Li, Chenghan ; Gray, Johnnie ; Christou, George ; Zapf, Vivien S. ; Chan, Garnet Kin-Lic ; Cheng, Hai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19941303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>energy</topic><topic>heat capacity</topic><topic>high magnetic field science</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>magnetic properties</topic><topic>quantum mechanics</topic><topic>transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dian-Teng</creatorcontrib><creatorcontrib>Helms, Phillip</creatorcontrib><creatorcontrib>Hale, Ashlyn R.</creatorcontrib><creatorcontrib>Lee, Minseong</creatorcontrib><creatorcontrib>Li, Chenghan</creatorcontrib><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Christou, George</creatorcontrib><creatorcontrib>Zapf, Vivien S.</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dian-Teng</au><au>Helms, Phillip</au><au>Hale, Ashlyn R.</au><au>Lee, Minseong</au><au>Li, Chenghan</au><au>Gray, Johnnie</au><au>Christou, George</au><au>Zapf, Vivien S.</au><au>Chan, Garnet Kin-Lic</au><au>Cheng, Hai-Ping</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2022-03-07</date><risdate>2022</risdate><volume>13</volume><issue>10</issue><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000223699913</orcidid><orcidid>https://orcid.org/0000000159235523</orcidid><orcidid>https://orcid.org/0000000283754515</orcidid><orcidid>https://orcid.org/0000000160959318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2022-03, Vol.13 (10) |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_1994130 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | energy heat capacity high magnetic field science INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY magnetic properties quantum mechanics transition metals |
title | Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Hyperoptimized%20Tensor%20Networks%20and%20First-Principles%20Electronic%20Structure%20to%20Simulate%20the%20Experimental%20Properties%20of%20the%20Giant%20%7BMn84%7D%20Torus&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Chen,%20Dian-Teng&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-03-07&rft.volume=13&rft.issue=10&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/&rft_dat=%3Costi%3E1994130%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19941303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |