Loading…

Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus

The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2022-03, Vol.13 (10)
Main Authors: Chen, Dian-Teng, Helms, Phillip, Hale, Ashlyn R., Lee, Minseong, Li, Chenghan, Gray, Johnnie, Christou, George, Zapf, Vivien S., Chan, Garnet Kin-Lic, Cheng, Hai-Ping
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 10
container_start_page
container_title The journal of physical chemistry letters
container_volume 13
creator Chen, Dian-Teng
Helms, Phillip
Hale, Ashlyn R.
Lee, Minseong
Li, Chenghan
Gray, Johnnie
Christou, George
Zapf, Vivien S.
Chan, Garnet Kin-Lic
Cheng, Hai-Ping
description The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1994130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994130</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19941303</originalsourceid><addsrcrecordid>eNqNjctKw1AQhg-iYLW-w-A-kNDYJmtJ7UYpNK7L4XRqR5M5YWaCN3wHH9mDuOjS1f_Bfztxk6Iuq2xRVDenR3zuLlSf83xe59Vi4r4flfgJVu8DShyMevrAHbTIGgUe0F6jvCh43sGSRC1bC3GgoUOFpsNgEpkCbEzGYKMgWIQN9WPnLfEBoXlLw9Qjm-9gnS5QjFI57n_tO_Js8HnPVfkFbZRRp-5s7zvFqz-9dNfLpr1dZVGNthrIMBxCZE7n26Kuy2KWz_4V-gFH5VjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Dian-Teng ; Helms, Phillip ; Hale, Ashlyn R. ; Lee, Minseong ; Li, Chenghan ; Gray, Johnnie ; Christou, George ; Zapf, Vivien S. ; Chan, Garnet Kin-Lic ; Cheng, Hai-Ping</creator><creatorcontrib>Chen, Dian-Teng ; Helms, Phillip ; Hale, Ashlyn R. ; Lee, Minseong ; Li, Chenghan ; Gray, Johnnie ; Christou, George ; Zapf, Vivien S. ; Chan, Garnet Kin-Lic ; Cheng, Hai-Ping ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>energy ; heat capacity ; high magnetic field science ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; magnetic properties ; quantum mechanics ; transition metals</subject><ispartof>The journal of physical chemistry letters, 2022-03, Vol.13 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000223699913 ; 0000000159235523 ; 0000000283754515 ; 0000000160959318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1994130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dian-Teng</creatorcontrib><creatorcontrib>Helms, Phillip</creatorcontrib><creatorcontrib>Hale, Ashlyn R.</creatorcontrib><creatorcontrib>Lee, Minseong</creatorcontrib><creatorcontrib>Li, Chenghan</creatorcontrib><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Christou, George</creatorcontrib><creatorcontrib>Zapf, Vivien S.</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</title><title>The journal of physical chemistry letters</title><description>The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.</description><subject>energy</subject><subject>heat capacity</subject><subject>high magnetic field science</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>magnetic properties</subject><subject>quantum mechanics</subject><subject>transition metals</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjctKw1AQhg-iYLW-w-A-kNDYJmtJ7UYpNK7L4XRqR5M5YWaCN3wHH9mDuOjS1f_Bfztxk6Iuq2xRVDenR3zuLlSf83xe59Vi4r4flfgJVu8DShyMevrAHbTIGgUe0F6jvCh43sGSRC1bC3GgoUOFpsNgEpkCbEzGYKMgWIQN9WPnLfEBoXlLw9Qjm-9gnS5QjFI57n_tO_Js8HnPVfkFbZRRp-5s7zvFqz-9dNfLpr1dZVGNthrIMBxCZE7n26Kuy2KWz_4V-gFH5VjA</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Chen, Dian-Teng</creator><creator>Helms, Phillip</creator><creator>Hale, Ashlyn R.</creator><creator>Lee, Minseong</creator><creator>Li, Chenghan</creator><creator>Gray, Johnnie</creator><creator>Christou, George</creator><creator>Zapf, Vivien S.</creator><creator>Chan, Garnet Kin-Lic</creator><creator>Cheng, Hai-Ping</creator><general>American Chemical Society</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000223699913</orcidid><orcidid>https://orcid.org/0000000159235523</orcidid><orcidid>https://orcid.org/0000000283754515</orcidid><orcidid>https://orcid.org/0000000160959318</orcidid></search><sort><creationdate>20220307</creationdate><title>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</title><author>Chen, Dian-Teng ; Helms, Phillip ; Hale, Ashlyn R. ; Lee, Minseong ; Li, Chenghan ; Gray, Johnnie ; Christou, George ; Zapf, Vivien S. ; Chan, Garnet Kin-Lic ; Cheng, Hai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19941303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>energy</topic><topic>heat capacity</topic><topic>high magnetic field science</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>magnetic properties</topic><topic>quantum mechanics</topic><topic>transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dian-Teng</creatorcontrib><creatorcontrib>Helms, Phillip</creatorcontrib><creatorcontrib>Hale, Ashlyn R.</creatorcontrib><creatorcontrib>Lee, Minseong</creatorcontrib><creatorcontrib>Li, Chenghan</creatorcontrib><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Christou, George</creatorcontrib><creatorcontrib>Zapf, Vivien S.</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dian-Teng</au><au>Helms, Phillip</au><au>Hale, Ashlyn R.</au><au>Lee, Minseong</au><au>Li, Chenghan</au><au>Gray, Johnnie</au><au>Christou, George</au><au>Zapf, Vivien S.</au><au>Chan, Garnet Kin-Lic</au><au>Cheng, Hai-Ping</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2022-03-07</date><risdate>2022</risdate><volume>13</volume><issue>10</issue><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. Here, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000223699913</orcidid><orcidid>https://orcid.org/0000000159235523</orcidid><orcidid>https://orcid.org/0000000283754515</orcidid><orcidid>https://orcid.org/0000000160959318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-03, Vol.13 (10)
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_1994130
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects energy
heat capacity
high magnetic field science
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
magnetic properties
quantum mechanics
transition metals
title Using Hyperoptimized Tensor Networks and First-Principles Electronic Structure to Simulate the Experimental Properties of the Giant {Mn84} Torus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Hyperoptimized%20Tensor%20Networks%20and%20First-Principles%20Electronic%20Structure%20to%20Simulate%20the%20Experimental%20Properties%20of%20the%20Giant%20%7BMn84%7D%20Torus&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Chen,%20Dian-Teng&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-03-07&rft.volume=13&rft.issue=10&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/&rft_dat=%3Costi%3E1994130%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19941303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true