Loading…
Noninterpenetrating Indium Sulfide Supertetrahedral Cristobalite Framework
Realizing the synthesis and crystal structure of microporous materials with pore sizes 10--20 {angstrom} has been a formidable challenge in molecular sieve science. Access to such materials, with uniform pore size, is expected to impact the petrochemical and the life-sciences fields by providing opp...
Saved in:
Published in: | Journal of the American Chemical Society 1999-06, Vol.121 (25), p.6096-6097 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Realizing the synthesis and crystal structure of microporous materials with pore sizes 10--20 {angstrom} has been a formidable challenge in molecular sieve science. Access to such materials, with uniform pore size, is expected to impact the petrochemical and the life-sciences fields by providing opportunities for the size and shape-selective catalysis/separation of large molecules. In this direction, theoretical approaches to decorating specific 4-connected networks have been proposed, whereby replacing each (T1) tetrahedron, TX{sub 4}, in a given network by a larger tetrahedron (hereafter referred to as a supertetrahedron), signified Tn, yields a porous network due to the increased size of the building blocks. With large n, frameworks of unprecedented porosity could be achieved. Recognizing the potential of this approach, the authors have embarked on a program aimed at using inorganic clusters as molecular building blocks in the assembly of extended networks: The copolymerization of Mn(II) with the tetrahedral adamantine Ge{sub 4}S{sub 10}{sup 4{minus}} (T2) cluster, composed of 4 GeX{sub 4/2} tetrahedra, yielded MnGe{sub 4}S{sub 10}{center{underscore}dot}2(CH{sub 3}){sub 4}N having a porous cristobalite network with the organic cations occupying the void space. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja990410r |