Loading…
Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends
A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without for...
Saved in:
Published in: | Environmental science & technology 1999-11, Vol.33 (21), p.3873-3880 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863 |
---|---|
cites | cdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863 |
container_end_page | 3880 |
container_issue | 21 |
container_start_page | 3873 |
container_title | Environmental science & technology |
container_volume | 33 |
creator | Shively, Thomas S Sager, Thomas W |
description | A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines. |
doi_str_mv | 10.1021/es990286b |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20000715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>46534320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</originalsourceid><addsrcrecordid>eNplkU1v1DAQhiMEEkvLgX8Q8VGJQ8rYzod9XJUCRVsodEHcrIkz2XrJxovtSPDv8SpVK8FpDvPMO-87k2XPGJwy4OwNBaWAy7p9kC1YxaGoZMUeZgsAJgol6h-PsychbAGAC5CLrLumnd2jxx1Fb03-lTaeQrBuzJf7vXdobvLo8mW3nUK04ybvnc8vKZLzbnAba3DIv6O32A4UcpumrM-v3DBM8aCx9jR24Th71OMQ6OltPcq-vTtfn30oVp_fX5wtVwWWDGLREgowHVN1o3pjSigNcUQuO-Sib4xssTFMAieiupelbAV0VMpOCiGVrMVR9mLWdcmrDsZGMjfGjSOZqHnKDA2rEnUyUyner4lC1DsbDA0DjuSmoFlTSaGYSuDzf8Ctm_yYEuh0vKSkSkjQ6xky3oXgqdd7b3fo_2gG-vASffeSxL68FcSQDtd7HI0N9wNMVaB4wooZsyHS77s2-p-6bkRT6fXVtV5_erv6-KUEfbDwaubRhHuL_6__C6RRpmc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230153940</pqid></control><display><type>article</type><title>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Shively, Thomas S ; Sager, Thomas W</creator><creatorcontrib>Shively, Thomas S ; Sager, Thomas W ; Univ. of Texas, Austin, TX (US)</creatorcontrib><description>A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es990286b</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>AIR POLLUTION ; AIR POLLUTION MONITORING ; Applied sciences ; Atmospheric pollution ; Chemical composition and interactions. Ionic interactions and processes ; Earth, ocean, space ; Environment ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; External geophysics ; MATHEMATICAL MODELS ; METEOROLOGY ; NITROGEN OXIDES ; OZONE ; Pollution ; REGRESSION ANALYSIS ; Trends ; USA, Texas, Houston</subject><ispartof>Environmental science & technology, 1999-11, Vol.33 (21), p.3873-3880</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 1, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</citedby><cites>FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1195092$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20000715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shively, Thomas S</creatorcontrib><creatorcontrib>Sager, Thomas W</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (US)</creatorcontrib><title>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines.</description><subject>AIR POLLUTION</subject><subject>AIR POLLUTION MONITORING</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemical composition and interactions. Ionic interactions and processes</subject><subject>Earth, ocean, space</subject><subject>Environment</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>MATHEMATICAL MODELS</subject><subject>METEOROLOGY</subject><subject>NITROGEN OXIDES</subject><subject>OZONE</subject><subject>Pollution</subject><subject>REGRESSION ANALYSIS</subject><subject>Trends</subject><subject>USA, Texas, Houston</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNplkU1v1DAQhiMEEkvLgX8Q8VGJQ8rYzod9XJUCRVsodEHcrIkz2XrJxovtSPDv8SpVK8FpDvPMO-87k2XPGJwy4OwNBaWAy7p9kC1YxaGoZMUeZgsAJgol6h-PsychbAGAC5CLrLumnd2jxx1Fb03-lTaeQrBuzJf7vXdobvLo8mW3nUK04ybvnc8vKZLzbnAba3DIv6O32A4UcpumrM-v3DBM8aCx9jR24Th71OMQ6OltPcq-vTtfn30oVp_fX5wtVwWWDGLREgowHVN1o3pjSigNcUQuO-Sib4xssTFMAieiupelbAV0VMpOCiGVrMVR9mLWdcmrDsZGMjfGjSOZqHnKDA2rEnUyUyner4lC1DsbDA0DjuSmoFlTSaGYSuDzf8Ctm_yYEuh0vKSkSkjQ6xky3oXgqdd7b3fo_2gG-vASffeSxL68FcSQDtd7HI0N9wNMVaB4wooZsyHS77s2-p-6bkRT6fXVtV5_erv6-KUEfbDwaubRhHuL_6__C6RRpmc</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Shively, Thomas S</creator><creator>Sager, Thomas W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope><scope>OTOTI</scope></search><sort><creationdate>19991101</creationdate><title>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</title><author>Shively, Thomas S ; Sager, Thomas W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>AIR POLLUTION</topic><topic>AIR POLLUTION MONITORING</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemical composition and interactions. Ionic interactions and processes</topic><topic>Earth, ocean, space</topic><topic>Environment</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>MATHEMATICAL MODELS</topic><topic>METEOROLOGY</topic><topic>NITROGEN OXIDES</topic><topic>OZONE</topic><topic>Pollution</topic><topic>REGRESSION ANALYSIS</topic><topic>Trends</topic><topic>USA, Texas, Houston</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shively, Thomas S</creatorcontrib><creatorcontrib>Sager, Thomas W</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (US)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shively, Thomas S</au><au>Sager, Thomas W</au><aucorp>Univ. of Texas, Austin, TX (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>33</volume><issue>21</issue><spage>3873</spage><epage>3880</epage><pages>3873-3880</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/es990286b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 1999-11, Vol.33 (21), p.3873-3880 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_20000715 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | AIR POLLUTION AIR POLLUTION MONITORING Applied sciences Atmospheric pollution Chemical composition and interactions. Ionic interactions and processes Earth, ocean, space Environment ENVIRONMENTAL SCIENCES Exact sciences and technology External geophysics MATHEMATICAL MODELS METEOROLOGY NITROGEN OXIDES OZONE Pollution REGRESSION ANALYSIS Trends USA, Texas, Houston |
title | Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20Regression%20Approach%20to%20Adjusting%20for%20Meteorological%20Variables%20in%20Air%20Pollution%20Trends&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Shively,%20Thomas%20S&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(US)&rft.date=1999-11-01&rft.volume=33&rft.issue=21&rft.spage=3873&rft.epage=3880&rft.pages=3873-3880&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es990286b&rft_dat=%3Cproquest_osti_%3E46534320%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230153940&rft_id=info:pmid/&rfr_iscdi=true |