Loading…

Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends

A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without for...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 1999-11, Vol.33 (21), p.3873-3880
Main Authors: Shively, Thomas S, Sager, Thomas W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863
cites cdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863
container_end_page 3880
container_issue 21
container_start_page 3873
container_title Environmental science & technology
container_volume 33
creator Shively, Thomas S
Sager, Thomas W
description A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines.
doi_str_mv 10.1021/es990286b
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20000715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>46534320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</originalsourceid><addsrcrecordid>eNplkU1v1DAQhiMEEkvLgX8Q8VGJQ8rYzod9XJUCRVsodEHcrIkz2XrJxovtSPDv8SpVK8FpDvPMO-87k2XPGJwy4OwNBaWAy7p9kC1YxaGoZMUeZgsAJgol6h-PsychbAGAC5CLrLumnd2jxx1Fb03-lTaeQrBuzJf7vXdobvLo8mW3nUK04ybvnc8vKZLzbnAba3DIv6O32A4UcpumrM-v3DBM8aCx9jR24Th71OMQ6OltPcq-vTtfn30oVp_fX5wtVwWWDGLREgowHVN1o3pjSigNcUQuO-Sib4xssTFMAieiupelbAV0VMpOCiGVrMVR9mLWdcmrDsZGMjfGjSOZqHnKDA2rEnUyUyner4lC1DsbDA0DjuSmoFlTSaGYSuDzf8Ctm_yYEuh0vKSkSkjQ6xky3oXgqdd7b3fo_2gG-vASffeSxL68FcSQDtd7HI0N9wNMVaB4wooZsyHS77s2-p-6bkRT6fXVtV5_erv6-KUEfbDwaubRhHuL_6__C6RRpmc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230153940</pqid></control><display><type>article</type><title>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Shively, Thomas S ; Sager, Thomas W</creator><creatorcontrib>Shively, Thomas S ; Sager, Thomas W ; Univ. of Texas, Austin, TX (US)</creatorcontrib><description>A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es990286b</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>AIR POLLUTION ; AIR POLLUTION MONITORING ; Applied sciences ; Atmospheric pollution ; Chemical composition and interactions. Ionic interactions and processes ; Earth, ocean, space ; Environment ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; External geophysics ; MATHEMATICAL MODELS ; METEOROLOGY ; NITROGEN OXIDES ; OZONE ; Pollution ; REGRESSION ANALYSIS ; Trends ; USA, Texas, Houston</subject><ispartof>Environmental science &amp; technology, 1999-11, Vol.33 (21), p.3873-3880</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 1, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</citedby><cites>FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1195092$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20000715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shively, Thomas S</creatorcontrib><creatorcontrib>Sager, Thomas W</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (US)</creatorcontrib><title>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines.</description><subject>AIR POLLUTION</subject><subject>AIR POLLUTION MONITORING</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemical composition and interactions. Ionic interactions and processes</subject><subject>Earth, ocean, space</subject><subject>Environment</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>MATHEMATICAL MODELS</subject><subject>METEOROLOGY</subject><subject>NITROGEN OXIDES</subject><subject>OZONE</subject><subject>Pollution</subject><subject>REGRESSION ANALYSIS</subject><subject>Trends</subject><subject>USA, Texas, Houston</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNplkU1v1DAQhiMEEkvLgX8Q8VGJQ8rYzod9XJUCRVsodEHcrIkz2XrJxovtSPDv8SpVK8FpDvPMO-87k2XPGJwy4OwNBaWAy7p9kC1YxaGoZMUeZgsAJgol6h-PsychbAGAC5CLrLumnd2jxx1Fb03-lTaeQrBuzJf7vXdobvLo8mW3nUK04ybvnc8vKZLzbnAba3DIv6O32A4UcpumrM-v3DBM8aCx9jR24Th71OMQ6OltPcq-vTtfn30oVp_fX5wtVwWWDGLREgowHVN1o3pjSigNcUQuO-Sib4xssTFMAieiupelbAV0VMpOCiGVrMVR9mLWdcmrDsZGMjfGjSOZqHnKDA2rEnUyUyner4lC1DsbDA0DjuSmoFlTSaGYSuDzf8Ctm_yYEuh0vKSkSkjQ6xky3oXgqdd7b3fo_2gG-vASffeSxL68FcSQDtd7HI0N9wNMVaB4wooZsyHS77s2-p-6bkRT6fXVtV5_erv6-KUEfbDwaubRhHuL_6__C6RRpmc</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Shively, Thomas S</creator><creator>Sager, Thomas W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope><scope>OTOTI</scope></search><sort><creationdate>19991101</creationdate><title>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</title><author>Shively, Thomas S ; Sager, Thomas W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>AIR POLLUTION</topic><topic>AIR POLLUTION MONITORING</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemical composition and interactions. Ionic interactions and processes</topic><topic>Earth, ocean, space</topic><topic>Environment</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>MATHEMATICAL MODELS</topic><topic>METEOROLOGY</topic><topic>NITROGEN OXIDES</topic><topic>OZONE</topic><topic>Pollution</topic><topic>REGRESSION ANALYSIS</topic><topic>Trends</topic><topic>USA, Texas, Houston</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shively, Thomas S</creatorcontrib><creatorcontrib>Sager, Thomas W</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (US)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shively, Thomas S</au><au>Sager, Thomas W</au><aucorp>Univ. of Texas, Austin, TX (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>33</volume><issue>21</issue><spage>3873</spage><epage>3880</epage><pages>3873-3880</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A semiparametric regression model is used to analyze relationships between ambient ozone, related meteorological predictor variables, and time trends. This model enjoys a number of advantages over alternatives. The model produces outputs that parallel the outputs of linear regression but without forcing the structure of linear regression upon the data. Instead, the abundant data are allowed to determine the form of the model as in other nonparametric regression models. Four Houston, TX, sites with relatively complete ozone and meteorological data from 1983 to 1995 are analyzed. For these four sites, the model explains over 60% of the variation in log (ozone) and estimates declines in meteorologically adjusted ozone of 13−26%. These estimated declines appear to be real and are consistent with other evidence, such as declines in NO x , declines in exceedance days, and implementation of control policies. Because the estimated declines are interpreted, as in ordinary regression, as having been adjusted for year-to-year differences in the meteorological variables, one can infer that factors other than changes in the weather are responsible for the declines.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/es990286b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 1999-11, Vol.33 (21), p.3873-3880
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_20000715
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects AIR POLLUTION
AIR POLLUTION MONITORING
Applied sciences
Atmospheric pollution
Chemical composition and interactions. Ionic interactions and processes
Earth, ocean, space
Environment
ENVIRONMENTAL SCIENCES
Exact sciences and technology
External geophysics
MATHEMATICAL MODELS
METEOROLOGY
NITROGEN OXIDES
OZONE
Pollution
REGRESSION ANALYSIS
Trends
USA, Texas, Houston
title Semiparametric Regression Approach to Adjusting for Meteorological Variables in Air Pollution Trends
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20Regression%20Approach%20to%20Adjusting%20for%20Meteorological%20Variables%20in%20Air%20Pollution%20Trends&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Shively,%20Thomas%20S&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(US)&rft.date=1999-11-01&rft.volume=33&rft.issue=21&rft.spage=3873&rft.epage=3880&rft.pages=3873-3880&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es990286b&rft_dat=%3Cproquest_osti_%3E46534320%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a410t-bea30cd19679fcc404ce2aa28da23f7c8ba7c1802eee6f848b30de48d83389863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230153940&rft_id=info:pmid/&rfr_iscdi=true