Loading…
Heat Transfer Enhancement and Vortex Flow Structure Over a Heated Cylinder Oscillating in the Crossflow Direction
Experiments are preformed to study the flow structure and heat transfer over a heated oscillating cylinder. Both flow visualization using a smoke wire and local heat transfer measurements around the cylinder were made. The excitation frequencies of the cylinder are selected at Fe/Fn = 0, 0.5, 1, 1.5...
Saved in:
Published in: | Journal of heat transfer 1999-11, Vol.121 (4), p.789-795 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experiments are preformed to study the flow structure and heat transfer over a heated oscillating cylinder. Both flow visualization using a smoke wire and local heat transfer measurements around the cylinder were made. The excitation frequencies of the cylinder are selected at Fe/Fn = 0, 0.5, 1, 1.5, 2, 2.5, and 3. These include excitations at harmonic, subharmonic, superharmonic, and nonharmonic frequencies. Synchronization of vortex shedding with the cylinder excitation occurs not only at Fe/Fn = 1 but also at Fe/Fn = 3, which can greatly enhance the heat transfer. The simultaneous enhancement of heat transfer at the stagnation point, its downstream region, and the wake region of the flow suggests that different modes of instabilities occurring in the shear layer of the near wake are actually initiated and amplified far upstream in the stagnation point, which were suppressed in the accelerated flow region and re-amplified in the decelerated flow region. As long as the dominant mode of the instability is amplified by the excitation of cylinder, enhancement of heat transfer can be obtained. During the experiments, the Reynolds numbers vary from 1600 to 4800, the ratios of oscillation amplitude to diameter of the cylinder from 0.064 to 0.016. |
---|---|
ISSN: | 0022-1481 1528-8943 |
DOI: | 10.1115/1.2826067 |