Loading…

Crossover SAFT Equation of State:  Application for Normal Alkanes

In this paper we develop a crossover modification of the statistical associating fluid theory (SAFT) equation of state for macromolecular chain fluids which incorporates the scaling laws asymptotically close to the critical point and is transformed into the original classical SAFT equation of state...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 1999-12, Vol.38 (12), p.4993-5004
Main Authors: Kiselev, S. B, Ely, J. F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a352t-2c8ce3d38382b8d2259885226531403361dec577e6f9006c4d7b3fc3c8df5c103
cites cdi_FETCH-LOGICAL-a352t-2c8ce3d38382b8d2259885226531403361dec577e6f9006c4d7b3fc3c8df5c103
container_end_page 5004
container_issue 12
container_start_page 4993
container_title Industrial & engineering chemistry research
container_volume 38
creator Kiselev, S. B
Ely, J. F
description In this paper we develop a crossover modification of the statistical associating fluid theory (SAFT) equation of state for macromolecular chain fluids which incorporates the scaling laws asymptotically close to the critical point and is transformed into the original classical SAFT equation of state far away from the critical point. A comparison is made with experimental data for pure methane, ethane, n-hexane, n-decane, and n-eicosane in the one- and two-phase regions. We also present comparisons with experimental single-phase data for n-triacontane and n-tetracontane. We show that, over a wide range of states, the crossover SAFT model yields a much better representation of the thermodynamic properties of pure fluids than the original SAFT equation of state. The crossover SAFT equation of state reproduces the saturated pressure data in the entire temperature range from the triple point to the critical temperature with an average absolute deviation (AAD) of about 3.8%, the saturated liquid densities with an AAD of about 1.5%, and the saturated vapor densities with an AAD of about 3.4%. In the one-phase region, the crossover SAFT equation represents the experimental values of pressure in the critical region with an AAD of about 2.9% in the region bounded by 0.05ρc ≤ ρ ≤ 2.5ρc and T c ≤ T ≤ 2T c, and the liquid density data with an AAD of about 3% at the pressures up to P = 2000 bar. For the n-alkanes C m H2 m +2 with the molecular weight M w > 142 (m > 10), the crossover SAFT model contains no adjustable parameters and can be used for the pure prediction of the fluid thermodynamic surface.
doi_str_mv 10.1021/ie990387i
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20005894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b29247507</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-2c8ce3d38382b8d2259885226531403361dec577e6f9006c4d7b3fc3c8df5c103</originalsourceid><addsrcrecordid>eNptkL1OwzAUhS0EEqUw8AaRgIEh4N_EYYuiFpDKj2hYWCzXcYTbEAc7RbCx8po8CYmCysJ0h_Pde-45ABwieIYgRudGJwkkPDZbYIQYhiGDlG2DEeSch4xztgv2vF9CCBmjdASyzFnv7Zt2wTyd5sHkdS1bY-vAlsG8la2--P78CtKmqYwahNK64Na6F1kFabWStfb7YKeUldcHv3MMHqeTPLsKZ3eX11k6CyVhuA2x4kqTgnDC8YIXGLOk-wfjiBFEISERKrRicayjMoEwUrSIF6RURPGiZApBMgZHw13rWyO8Mq1Wz8rWtVatwH0kntCOOh0o1SdzuhSNMy_SfQgERd-R2HTUsccD20ivZFU6WSvj_xYwxJz3xuGAGd_q940s3UpEMYmZyO_nYprf0IcnysWs408GXiovlnbt6q6Wf-x_AIl5f6o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crossover SAFT Equation of State:  Application for Normal Alkanes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kiselev, S. B ; Ely, J. F</creator><creatorcontrib>Kiselev, S. B ; Ely, J. F ; Colorado School of Mines, Golden, CO (US)</creatorcontrib><description>In this paper we develop a crossover modification of the statistical associating fluid theory (SAFT) equation of state for macromolecular chain fluids which incorporates the scaling laws asymptotically close to the critical point and is transformed into the original classical SAFT equation of state far away from the critical point. A comparison is made with experimental data for pure methane, ethane, n-hexane, n-decane, and n-eicosane in the one- and two-phase regions. We also present comparisons with experimental single-phase data for n-triacontane and n-tetracontane. We show that, over a wide range of states, the crossover SAFT model yields a much better representation of the thermodynamic properties of pure fluids than the original SAFT equation of state. The crossover SAFT equation of state reproduces the saturated pressure data in the entire temperature range from the triple point to the critical temperature with an average absolute deviation (AAD) of about 3.8%, the saturated liquid densities with an AAD of about 1.5%, and the saturated vapor densities with an AAD of about 3.4%. In the one-phase region, the crossover SAFT equation represents the experimental values of pressure in the critical region with an AAD of about 2.9% in the region bounded by 0.05ρc ≤ ρ ≤ 2.5ρc and T c ≤ T ≤ 2T c, and the liquid density data with an AAD of about 3% at the pressures up to P = 2000 bar. For the n-alkanes C m H2 m +2 with the molecular weight M w &gt; 142 (m &gt; 10), the crossover SAFT model contains no adjustable parameters and can be used for the pure prediction of the fluid thermodynamic surface.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie990387i</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>02 PETROLEUM ; 03 NATURAL GAS ; ALKANES ; Chemical thermodynamics ; Chemistry ; DECANE ; EQUATIONS OF STATE ; ETHANE ; Exact sciences and technology ; General and physical chemistry ; General. Theory ; HEXANE ; MATHEMATICAL MODELS ; METHANE ; THERMODYNAMIC PROPERTIES</subject><ispartof>Industrial &amp; engineering chemistry research, 1999-12, Vol.38 (12), p.4993-5004</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-2c8ce3d38382b8d2259885226531403361dec577e6f9006c4d7b3fc3c8df5c103</citedby><cites>FETCH-LOGICAL-a352t-2c8ce3d38382b8d2259885226531403361dec577e6f9006c4d7b3fc3c8df5c103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1202880$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20005894$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiselev, S. B</creatorcontrib><creatorcontrib>Ely, J. F</creatorcontrib><creatorcontrib>Colorado School of Mines, Golden, CO (US)</creatorcontrib><title>Crossover SAFT Equation of State:  Application for Normal Alkanes</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>In this paper we develop a crossover modification of the statistical associating fluid theory (SAFT) equation of state for macromolecular chain fluids which incorporates the scaling laws asymptotically close to the critical point and is transformed into the original classical SAFT equation of state far away from the critical point. A comparison is made with experimental data for pure methane, ethane, n-hexane, n-decane, and n-eicosane in the one- and two-phase regions. We also present comparisons with experimental single-phase data for n-triacontane and n-tetracontane. We show that, over a wide range of states, the crossover SAFT model yields a much better representation of the thermodynamic properties of pure fluids than the original SAFT equation of state. The crossover SAFT equation of state reproduces the saturated pressure data in the entire temperature range from the triple point to the critical temperature with an average absolute deviation (AAD) of about 3.8%, the saturated liquid densities with an AAD of about 1.5%, and the saturated vapor densities with an AAD of about 3.4%. In the one-phase region, the crossover SAFT equation represents the experimental values of pressure in the critical region with an AAD of about 2.9% in the region bounded by 0.05ρc ≤ ρ ≤ 2.5ρc and T c ≤ T ≤ 2T c, and the liquid density data with an AAD of about 3% at the pressures up to P = 2000 bar. For the n-alkanes C m H2 m +2 with the molecular weight M w &gt; 142 (m &gt; 10), the crossover SAFT model contains no adjustable parameters and can be used for the pure prediction of the fluid thermodynamic surface.</description><subject>02 PETROLEUM</subject><subject>03 NATURAL GAS</subject><subject>ALKANES</subject><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>DECANE</subject><subject>EQUATIONS OF STATE</subject><subject>ETHANE</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Theory</subject><subject>HEXANE</subject><subject>MATHEMATICAL MODELS</subject><subject>METHANE</subject><subject>THERMODYNAMIC PROPERTIES</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAUhS0EEqUw8AaRgIEh4N_EYYuiFpDKj2hYWCzXcYTbEAc7RbCx8po8CYmCysJ0h_Pde-45ABwieIYgRudGJwkkPDZbYIQYhiGDlG2DEeSch4xztgv2vF9CCBmjdASyzFnv7Zt2wTyd5sHkdS1bY-vAlsG8la2--P78CtKmqYwahNK64Na6F1kFabWStfb7YKeUldcHv3MMHqeTPLsKZ3eX11k6CyVhuA2x4kqTgnDC8YIXGLOk-wfjiBFEISERKrRicayjMoEwUrSIF6RURPGiZApBMgZHw13rWyO8Mq1Wz8rWtVatwH0kntCOOh0o1SdzuhSNMy_SfQgERd-R2HTUsccD20ivZFU6WSvj_xYwxJz3xuGAGd_q940s3UpEMYmZyO_nYprf0IcnysWs408GXiovlnbt6q6Wf-x_AIl5f6o</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Kiselev, S. B</creator><creator>Ely, J. F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19991201</creationdate><title>Crossover SAFT Equation of State:  Application for Normal Alkanes</title><author>Kiselev, S. B ; Ely, J. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-2c8ce3d38382b8d2259885226531403361dec577e6f9006c4d7b3fc3c8df5c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>02 PETROLEUM</topic><topic>03 NATURAL GAS</topic><topic>ALKANES</topic><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>DECANE</topic><topic>EQUATIONS OF STATE</topic><topic>ETHANE</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Theory</topic><topic>HEXANE</topic><topic>MATHEMATICAL MODELS</topic><topic>METHANE</topic><topic>THERMODYNAMIC PROPERTIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiselev, S. B</creatorcontrib><creatorcontrib>Ely, J. F</creatorcontrib><creatorcontrib>Colorado School of Mines, Golden, CO (US)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiselev, S. B</au><au>Ely, J. F</au><aucorp>Colorado School of Mines, Golden, CO (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossover SAFT Equation of State:  Application for Normal Alkanes</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1999-12-01</date><risdate>1999</risdate><volume>38</volume><issue>12</issue><spage>4993</spage><epage>5004</epage><pages>4993-5004</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>In this paper we develop a crossover modification of the statistical associating fluid theory (SAFT) equation of state for macromolecular chain fluids which incorporates the scaling laws asymptotically close to the critical point and is transformed into the original classical SAFT equation of state far away from the critical point. A comparison is made with experimental data for pure methane, ethane, n-hexane, n-decane, and n-eicosane in the one- and two-phase regions. We also present comparisons with experimental single-phase data for n-triacontane and n-tetracontane. We show that, over a wide range of states, the crossover SAFT model yields a much better representation of the thermodynamic properties of pure fluids than the original SAFT equation of state. The crossover SAFT equation of state reproduces the saturated pressure data in the entire temperature range from the triple point to the critical temperature with an average absolute deviation (AAD) of about 3.8%, the saturated liquid densities with an AAD of about 1.5%, and the saturated vapor densities with an AAD of about 3.4%. In the one-phase region, the crossover SAFT equation represents the experimental values of pressure in the critical region with an AAD of about 2.9% in the region bounded by 0.05ρc ≤ ρ ≤ 2.5ρc and T c ≤ T ≤ 2T c, and the liquid density data with an AAD of about 3% at the pressures up to P = 2000 bar. For the n-alkanes C m H2 m +2 with the molecular weight M w &gt; 142 (m &gt; 10), the crossover SAFT model contains no adjustable parameters and can be used for the pure prediction of the fluid thermodynamic surface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie990387i</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1999-12, Vol.38 (12), p.4993-5004
issn 0888-5885
1520-5045
language eng
recordid cdi_osti_scitechconnect_20005894
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects 02 PETROLEUM
03 NATURAL GAS
ALKANES
Chemical thermodynamics
Chemistry
DECANE
EQUATIONS OF STATE
ETHANE
Exact sciences and technology
General and physical chemistry
General. Theory
HEXANE
MATHEMATICAL MODELS
METHANE
THERMODYNAMIC PROPERTIES
title Crossover SAFT Equation of State:  Application for Normal Alkanes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossover%20SAFT%20Equation%20of%20State:%E2%80%89%20Application%20for%20Normal%20Alkanes&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kiselev,%20S.%20B&rft.aucorp=Colorado%20School%20of%20Mines,%20Golden,%20CO%20(US)&rft.date=1999-12-01&rft.volume=38&rft.issue=12&rft.spage=4993&rft.epage=5004&rft.pages=4993-5004&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie990387i&rft_dat=%3Cacs_osti_%3Eb29247507%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a352t-2c8ce3d38382b8d2259885226531403361dec577e6f9006c4d7b3fc3c8df5c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true