Loading…
Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstructure selection
A solidification microstructure selection diagram has been determined for Zn-rich Zn–Cu peritectic alloys containing up to 7.37 wt% Cu over the growth velocity range 0.02–4.82 mm/s and at a temperature gradient of 15 K/mm by means of the Bridgman technique. Regular and plate-like cellular growth was...
Saved in:
Published in: | Acta materialia 2000-01, Vol.48 (2), p.419-431 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-301bacf56cd0a608cb1b60cdf98673e5250d975a25b01430c13b3040da0070c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-301bacf56cd0a608cb1b60cdf98673e5250d975a25b01430c13b3040da0070c33 |
container_end_page | 431 |
container_issue | 2 |
container_start_page | 419 |
container_title | Acta materialia |
container_volume | 48 |
creator | Ma, D. Li, Y. Ng, S.C. Jones, H. |
description | A solidification microstructure selection diagram has been determined for Zn-rich Zn–Cu peritectic alloys containing up to 7.37
wt% Cu over the growth velocity range 0.02–4.82
mm/s and at a temperature gradient of 15
K/mm by means of the Bridgman technique. Regular and plate-like cellular growth was observed in a range of composition near the peritectic point at growth velocities above 0.5
mm/s. The minimum growth velocity for the formation of plate-like cellular growth was about 2.64
mm/s in the compositional range from 2.17 to 4.94
wt% Cu. Two transitions, namely, arrayed to nonaligned growth of primary dendrites, and peritectic to non-peritectic reaction, were also characterized and analyzed. The transition velocity from arrayed to nonaligned growth of primary dendrites increased with increasing alloy concentration, which is consistent with the prediction of a modified Hunt model. The transition growth velocity from peritectic to non-peritectic reaction exhibited a maximum near the peritectic composition. |
doi_str_mv | 10.1016/S1359-6454(99)00365-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20015248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645499003651</els_id><sourcerecordid>27590333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-301bacf56cd0a608cb1b60cdf98673e5250d975a25b01430c13b3040da0070c33</originalsourceid><addsrcrecordid>eNqFkctKxTAQhosoeH0EoaCILqqT5tLTlcjBGygu1I2bmE5TjMTmmLSCu_MO-oTnSUyt4tLVJOGbf_75kyTbBA4JEHF0SygvM8E42y_LAwAqeEaWkjUyKWiWM06X4_kXWU3WQ3gGIHnBYC15vG9NbbzGzrhW2TQ4G--NQTU8pK5JH9rMG3yKdTH_mPbpTHvTDTymylr3Hhbzz8vD9Nqgd6HzPXa912nQdtTcTFYaZYPe-qkbyf3Z6d30Iru6Ob-cnlxlyATpMgqkUthwgTUoAROsSCUA66aciIJqnnOoy4KrnFdAGAUktKLAoFYABSClG8nOqBtNGBlw8PiErm2jDZnHfXnOJpHaG6mZd6-9Dp18MQG1tarVrg8yL3gJlA5yfASHrYLXjZx586L8uyQgh9Tld-pyiFSWpfxOXZLYt_szQAVUtvGqRRP-mnPBC8YidjxiOkbyZrQfHOsW9fgXsnbmn0FfnN2YIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27590333</pqid></control><display><type>article</type><title>Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstructure selection</title><source>Elsevier</source><creator>Ma, D. ; Li, Y. ; Ng, S.C. ; Jones, H.</creator><creatorcontrib>Ma, D. ; Li, Y. ; Ng, S.C. ; Jones, H. ; National Univ. of Singapore (SG)</creatorcontrib><description>A solidification microstructure selection diagram has been determined for Zn-rich Zn–Cu peritectic alloys containing up to 7.37
wt% Cu over the growth velocity range 0.02–4.82
mm/s and at a temperature gradient of 15
K/mm by means of the Bridgman technique. Regular and plate-like cellular growth was observed in a range of composition near the peritectic point at growth velocities above 0.5
mm/s. The minimum growth velocity for the formation of plate-like cellular growth was about 2.64
mm/s in the compositional range from 2.17 to 4.94
wt% Cu. Two transitions, namely, arrayed to nonaligned growth of primary dendrites, and peritectic to non-peritectic reaction, were also characterized and analyzed. The transition velocity from arrayed to nonaligned growth of primary dendrites increased with increasing alloy concentration, which is consistent with the prediction of a modified Hunt model. The transition growth velocity from peritectic to non-peritectic reaction exhibited a maximum near the peritectic composition.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(99)00365-1</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alloys ; Applied sciences ; BRIDGMAN METHOD ; CONCENTRATION RATIO ; COPPER ALLOYS ; Cross-disciplinary physics: materials science; rheology ; CRYSTAL-PHASE TRANSFORMATIONS ; DENDRITES ; Exact sciences and technology ; MATERIALS SCIENCE ; Metals. Metallurgy ; MICROSTRUCTURE ; Peritectic solidification ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase transformations ; Physics ; SOLIDIFICATION ; ZINC ALLOYS</subject><ispartof>Acta materialia, 2000-01, Vol.48 (2), p.419-431</ispartof><rights>2000 Acta Metallurgica Inc.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-301bacf56cd0a608cb1b60cdf98673e5250d975a25b01430c13b3040da0070c33</citedby><cites>FETCH-LOGICAL-c461t-301bacf56cd0a608cb1b60cdf98673e5250d975a25b01430c13b3040da0070c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1265744$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20015248$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, D.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Ng, S.C.</creatorcontrib><creatorcontrib>Jones, H.</creatorcontrib><creatorcontrib>National Univ. of Singapore (SG)</creatorcontrib><title>Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstructure selection</title><title>Acta materialia</title><description>A solidification microstructure selection diagram has been determined for Zn-rich Zn–Cu peritectic alloys containing up to 7.37
wt% Cu over the growth velocity range 0.02–4.82
mm/s and at a temperature gradient of 15
K/mm by means of the Bridgman technique. Regular and plate-like cellular growth was observed in a range of composition near the peritectic point at growth velocities above 0.5
mm/s. The minimum growth velocity for the formation of plate-like cellular growth was about 2.64
mm/s in the compositional range from 2.17 to 4.94
wt% Cu. Two transitions, namely, arrayed to nonaligned growth of primary dendrites, and peritectic to non-peritectic reaction, were also characterized and analyzed. The transition velocity from arrayed to nonaligned growth of primary dendrites increased with increasing alloy concentration, which is consistent with the prediction of a modified Hunt model. The transition growth velocity from peritectic to non-peritectic reaction exhibited a maximum near the peritectic composition.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>BRIDGMAN METHOD</subject><subject>CONCENTRATION RATIO</subject><subject>COPPER ALLOYS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CRYSTAL-PHASE TRANSFORMATIONS</subject><subject>DENDRITES</subject><subject>Exact sciences and technology</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>Peritectic solidification</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>SOLIDIFICATION</subject><subject>ZINC ALLOYS</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkctKxTAQhosoeH0EoaCILqqT5tLTlcjBGygu1I2bmE5TjMTmmLSCu_MO-oTnSUyt4tLVJOGbf_75kyTbBA4JEHF0SygvM8E42y_LAwAqeEaWkjUyKWiWM06X4_kXWU3WQ3gGIHnBYC15vG9NbbzGzrhW2TQ4G--NQTU8pK5JH9rMG3yKdTH_mPbpTHvTDTymylr3Hhbzz8vD9Nqgd6HzPXa912nQdtTcTFYaZYPe-qkbyf3Z6d30Iru6Ob-cnlxlyATpMgqkUthwgTUoAROsSCUA66aciIJqnnOoy4KrnFdAGAUktKLAoFYABSClG8nOqBtNGBlw8PiErm2jDZnHfXnOJpHaG6mZd6-9Dp18MQG1tarVrg8yL3gJlA5yfASHrYLXjZx586L8uyQgh9Tld-pyiFSWpfxOXZLYt_szQAVUtvGqRRP-mnPBC8YidjxiOkbyZrQfHOsW9fgXsnbmn0FfnN2YIg</recordid><startdate>20000124</startdate><enddate>20000124</enddate><creator>Ma, D.</creator><creator>Li, Y.</creator><creator>Ng, S.C.</creator><creator>Jones, H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20000124</creationdate><title>Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstructure selection</title><author>Ma, D. ; Li, Y. ; Ng, S.C. ; Jones, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-301bacf56cd0a608cb1b60cdf98673e5250d975a25b01430c13b3040da0070c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>BRIDGMAN METHOD</topic><topic>CONCENTRATION RATIO</topic><topic>COPPER ALLOYS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CRYSTAL-PHASE TRANSFORMATIONS</topic><topic>DENDRITES</topic><topic>Exact sciences and technology</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>Peritectic solidification</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>SOLIDIFICATION</topic><topic>ZINC ALLOYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, D.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Ng, S.C.</creatorcontrib><creatorcontrib>Jones, H.</creatorcontrib><creatorcontrib>National Univ. of Singapore (SG)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, D.</au><au>Li, Y.</au><au>Ng, S.C.</au><au>Jones, H.</au><aucorp>National Univ. of Singapore (SG)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstructure selection</atitle><jtitle>Acta materialia</jtitle><date>2000-01-24</date><risdate>2000</risdate><volume>48</volume><issue>2</issue><spage>419</spage><epage>431</epage><pages>419-431</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>A solidification microstructure selection diagram has been determined for Zn-rich Zn–Cu peritectic alloys containing up to 7.37
wt% Cu over the growth velocity range 0.02–4.82
mm/s and at a temperature gradient of 15
K/mm by means of the Bridgman technique. Regular and plate-like cellular growth was observed in a range of composition near the peritectic point at growth velocities above 0.5
mm/s. The minimum growth velocity for the formation of plate-like cellular growth was about 2.64
mm/s in the compositional range from 2.17 to 4.94
wt% Cu. Two transitions, namely, arrayed to nonaligned growth of primary dendrites, and peritectic to non-peritectic reaction, were also characterized and analyzed. The transition velocity from arrayed to nonaligned growth of primary dendrites increased with increasing alloy concentration, which is consistent with the prediction of a modified Hunt model. The transition growth velocity from peritectic to non-peritectic reaction exhibited a maximum near the peritectic composition.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(99)00365-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2000-01, Vol.48 (2), p.419-431 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_20015248 |
source | Elsevier |
subjects | Alloys Applied sciences BRIDGMAN METHOD CONCENTRATION RATIO COPPER ALLOYS Cross-disciplinary physics: materials science rheology CRYSTAL-PHASE TRANSFORMATIONS DENDRITES Exact sciences and technology MATERIALS SCIENCE Metals. Metallurgy MICROSTRUCTURE Peritectic solidification Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Phase transformations Physics SOLIDIFICATION ZINC ALLOYS |
title | Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstructure selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unidirectional%20solidification%20of%20Zn-rich%20Zn%E2%80%93Cu%20peritectic%20alloys%E2%80%94I.%20Microstructure%20selection&rft.jtitle=Acta%20materialia&rft.au=Ma,%20D.&rft.aucorp=National%20Univ.%20of%20Singapore%20(SG)&rft.date=2000-01-24&rft.volume=48&rft.issue=2&rft.spage=419&rft.epage=431&rft.pages=419-431&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(99)00365-1&rft_dat=%3Cproquest_osti_%3E27590333%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-301bacf56cd0a608cb1b60cdf98673e5250d975a25b01430c13b3040da0070c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27590333&rft_id=info:pmid/&rfr_iscdi=true |