Loading…
Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design
Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection m...
Saved in:
Published in: | IEEE access 2023, Vol.11, p.108356-108364 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3 |
container_end_page | 108364 |
container_issue | |
container_start_page | 108356 |
container_title | IEEE access |
container_volume | 11 |
creator | Devi, S. Thopalli, Kowshik Dayana, R. Malarvezhi, P. Thiagarajan, Jayaraman J. |
description | Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug . |
doi_str_mv | 10.1109/ACCESS.2023.3320638 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2008122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10266321</ieee_id><doaj_id>oai_doaj_org_article_e56af13db69242bf9b4d9585cf28ac01</doaj_id><sourcerecordid>2875579685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3</originalsourceid><addsrcrecordid>eNpNUcFuEzEUXCGQqEq_AA4rOCf1e4693mMIgUaqlEPhbNne5-AoWQfbQe3f12ErVF_e6HlmZM80zUdgcwDW3y5Xq_XDwxwZ8jnnyCRXb5orBNnPuODy7Sv8vrnJec_qUXUluqtmuzmeUvwbxl27tXtypf1GpY6Ycmuf2vXj6RBDuVx_jedxmMAj5dbH1C7PuyONxZQQx6rLYTd-aN55c8h08zKvm1_f1z9Xd7P77Y_Nank_c1zJMuMdMG8ZM04oT1Qhh6HnnCFYw6TsLVhypJywCwewkB4IO1QMUAHrPL9uNpPvEM1en1I4mvSkown63yKmnTapBHcgTUIaD3ywsscFWt_bxdALJZxHZRyD6vV58oq5BJ1dqAH8dnEcaw4aL1khVtKXiVTj-nOmXPQ-ntNY_6hRdUJ0vVSisvjEcinmnMj_fxowfWlLT23pS1v6pa2q-jSpAhG9UqCUHIE_A4_Uj00</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875579685</pqid></control><display><type>article</type><title>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</title><source>IEEE Open Access Journals</source><creator>Devi, S. ; Thopalli, Kowshik ; Dayana, R. ; Malarvezhi, P. ; Thiagarajan, Jayaraman J.</creator><creatorcontrib>Devi, S. ; Thopalli, Kowshik ; Dayana, R. ; Malarvezhi, P. ; Thiagarajan, Jayaraman J.</creatorcontrib><description>Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3320638</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Artificial neural networks ; Benchmark testing ; Boxes ; Convergence ; Data augmentation ; Datasets ; deep neural networks ; Detectors ; limited data ; Object detection ; Object recognition ; Robustness ; Training</subject><ispartof>IEEE access, 2023, Vol.11, p.108356-108364</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3</cites><orcidid>0000-0003-4430-5765 ; 0000000344305765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10266321$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2008122$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Devi, S.</creatorcontrib><creatorcontrib>Thopalli, Kowshik</creatorcontrib><creatorcontrib>Dayana, R.</creatorcontrib><creatorcontrib>Malarvezhi, P.</creatorcontrib><creatorcontrib>Thiagarajan, Jayaraman J.</creatorcontrib><title>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug .</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Boxes</subject><subject>Convergence</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>deep neural networks</subject><subject>Detectors</subject><subject>limited data</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuEzEUXCGQqEq_AA4rOCf1e4693mMIgUaqlEPhbNne5-AoWQfbQe3f12ErVF_e6HlmZM80zUdgcwDW3y5Xq_XDwxwZ8jnnyCRXb5orBNnPuODy7Sv8vrnJec_qUXUluqtmuzmeUvwbxl27tXtypf1GpY6Ycmuf2vXj6RBDuVx_jedxmMAj5dbH1C7PuyONxZQQx6rLYTd-aN55c8h08zKvm1_f1z9Xd7P77Y_Nank_c1zJMuMdMG8ZM04oT1Qhh6HnnCFYw6TsLVhypJywCwewkB4IO1QMUAHrPL9uNpPvEM1en1I4mvSkown63yKmnTapBHcgTUIaD3ywsscFWt_bxdALJZxHZRyD6vV58oq5BJ1dqAH8dnEcaw4aL1khVtKXiVTj-nOmXPQ-ntNY_6hRdUJ0vVSisvjEcinmnMj_fxowfWlLT23pS1v6pa2q-jSpAhG9UqCUHIE_A4_Uj00</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Devi, S.</creator><creator>Thopalli, Kowshik</creator><creator>Dayana, R.</creator><creator>Malarvezhi, P.</creator><creator>Thiagarajan, Jayaraman J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4430-5765</orcidid><orcidid>https://orcid.org/0000000344305765</orcidid></search><sort><creationdate>2023</creationdate><title>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</title><author>Devi, S. ; Thopalli, Kowshik ; Dayana, R. ; Malarvezhi, P. ; Thiagarajan, Jayaraman J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Boxes</topic><topic>Convergence</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>deep neural networks</topic><topic>Detectors</topic><topic>limited data</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, S.</creatorcontrib><creatorcontrib>Thopalli, Kowshik</creatorcontrib><creatorcontrib>Dayana, R.</creatorcontrib><creatorcontrib>Malarvezhi, P.</creatorcontrib><creatorcontrib>Thiagarajan, Jayaraman J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, S.</au><au>Thopalli, Kowshik</au><au>Dayana, R.</au><au>Malarvezhi, P.</au><au>Thiagarajan, Jayaraman J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>108356</spage><epage>108364</epage><pages>108356-108364</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3320638</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4430-5765</orcidid><orcidid>https://orcid.org/0000000344305765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.108356-108364 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_osti_scitechconnect_2008122 |
source | IEEE Open Access Journals |
subjects | Annotations Artificial neural networks Benchmark testing Boxes Convergence Data augmentation Datasets deep neural networks Detectors limited data Object detection Object recognition Robustness Training |
title | Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Object%20Detectors%20by%20Exploiting%20Bounding%20Boxes%20for%20Augmentation%20Design&rft.jtitle=IEEE%20access&rft.au=Devi,%20S.&rft.date=2023&rft.volume=11&rft.spage=108356&rft.epage=108364&rft.pages=108356-108364&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3320638&rft_dat=%3Cproquest_osti_%3E2875579685%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2875579685&rft_id=info:pmid/&rft_ieee_id=10266321&rfr_iscdi=true |