Loading…

Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design

Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.108356-108364
Main Authors: Devi, S., Thopalli, Kowshik, Dayana, R., Malarvezhi, P., Thiagarajan, Jayaraman J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3
container_end_page 108364
container_issue
container_start_page 108356
container_title IEEE access
container_volume 11
creator Devi, S.
Thopalli, Kowshik
Dayana, R.
Malarvezhi, P.
Thiagarajan, Jayaraman J.
description Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug .
doi_str_mv 10.1109/ACCESS.2023.3320638
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2008122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10266321</ieee_id><doaj_id>oai_doaj_org_article_e56af13db69242bf9b4d9585cf28ac01</doaj_id><sourcerecordid>2875579685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3</originalsourceid><addsrcrecordid>eNpNUcFuEzEUXCGQqEq_AA4rOCf1e4693mMIgUaqlEPhbNne5-AoWQfbQe3f12ErVF_e6HlmZM80zUdgcwDW3y5Xq_XDwxwZ8jnnyCRXb5orBNnPuODy7Sv8vrnJec_qUXUluqtmuzmeUvwbxl27tXtypf1GpY6Ycmuf2vXj6RBDuVx_jedxmMAj5dbH1C7PuyONxZQQx6rLYTd-aN55c8h08zKvm1_f1z9Xd7P77Y_Nank_c1zJMuMdMG8ZM04oT1Qhh6HnnCFYw6TsLVhypJywCwewkB4IO1QMUAHrPL9uNpPvEM1en1I4mvSkown63yKmnTapBHcgTUIaD3ywsscFWt_bxdALJZxHZRyD6vV58oq5BJ1dqAH8dnEcaw4aL1khVtKXiVTj-nOmXPQ-ntNY_6hRdUJ0vVSisvjEcinmnMj_fxowfWlLT23pS1v6pa2q-jSpAhG9UqCUHIE_A4_Uj00</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875579685</pqid></control><display><type>article</type><title>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</title><source>IEEE Open Access Journals</source><creator>Devi, S. ; Thopalli, Kowshik ; Dayana, R. ; Malarvezhi, P. ; Thiagarajan, Jayaraman J.</creator><creatorcontrib>Devi, S. ; Thopalli, Kowshik ; Dayana, R. ; Malarvezhi, P. ; Thiagarajan, Jayaraman J.</creatorcontrib><description>Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3320638</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Artificial neural networks ; Benchmark testing ; Boxes ; Convergence ; Data augmentation ; Datasets ; deep neural networks ; Detectors ; limited data ; Object detection ; Object recognition ; Robustness ; Training</subject><ispartof>IEEE access, 2023, Vol.11, p.108356-108364</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3</cites><orcidid>0000-0003-4430-5765 ; 0000000344305765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10266321$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2008122$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Devi, S.</creatorcontrib><creatorcontrib>Thopalli, Kowshik</creatorcontrib><creatorcontrib>Dayana, R.</creatorcontrib><creatorcontrib>Malarvezhi, P.</creatorcontrib><creatorcontrib>Thiagarajan, Jayaraman J.</creatorcontrib><title>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug .</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Boxes</subject><subject>Convergence</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>deep neural networks</subject><subject>Detectors</subject><subject>limited data</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuEzEUXCGQqEq_AA4rOCf1e4693mMIgUaqlEPhbNne5-AoWQfbQe3f12ErVF_e6HlmZM80zUdgcwDW3y5Xq_XDwxwZ8jnnyCRXb5orBNnPuODy7Sv8vrnJec_qUXUluqtmuzmeUvwbxl27tXtypf1GpY6Ycmuf2vXj6RBDuVx_jedxmMAj5dbH1C7PuyONxZQQx6rLYTd-aN55c8h08zKvm1_f1z9Xd7P77Y_Nank_c1zJMuMdMG8ZM04oT1Qhh6HnnCFYw6TsLVhypJywCwewkB4IO1QMUAHrPL9uNpPvEM1en1I4mvSkown63yKmnTapBHcgTUIaD3ywsscFWt_bxdALJZxHZRyD6vV58oq5BJ1dqAH8dnEcaw4aL1khVtKXiVTj-nOmXPQ-ntNY_6hRdUJ0vVSisvjEcinmnMj_fxowfWlLT23pS1v6pa2q-jSpAhG9UqCUHIE_A4_Uj00</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Devi, S.</creator><creator>Thopalli, Kowshik</creator><creator>Dayana, R.</creator><creator>Malarvezhi, P.</creator><creator>Thiagarajan, Jayaraman J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4430-5765</orcidid><orcidid>https://orcid.org/0000000344305765</orcidid></search><sort><creationdate>2023</creationdate><title>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</title><author>Devi, S. ; Thopalli, Kowshik ; Dayana, R. ; Malarvezhi, P. ; Thiagarajan, Jayaraman J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Boxes</topic><topic>Convergence</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>deep neural networks</topic><topic>Detectors</topic><topic>limited data</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, S.</creatorcontrib><creatorcontrib>Thopalli, Kowshik</creatorcontrib><creatorcontrib>Dayana, R.</creatorcontrib><creatorcontrib>Malarvezhi, P.</creatorcontrib><creatorcontrib>Thiagarajan, Jayaraman J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, S.</au><au>Thopalli, Kowshik</au><au>Dayana, R.</au><au>Malarvezhi, P.</au><au>Thiagarajan, Jayaraman J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>108356</spage><epage>108364</epage><pages>108356-108364</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent advancements in developing pre-trained models using large-scale datasets have emphasized the importance of robust protocols to adapt them effectively to domain-specific data, especially when the available data is limited. To achieve data-efficient fine-tuning of pre-trained object detection models, data augmentations are crucial. However, selecting the appropriate augmentation policy for a given dataset is known to be challenging. In this study, we address an overlooked aspect of this problem - can bounding box annotations be utilized to develop more effective augmentation policies? Our approach InterAug reveals that, by leveraging the annotations, one can deduce the optimal context for each object in a scene, rather than manipulating the entire scene or just the pre-defined bounding boxes. Through rigorous empirical research involving various benchmarks and architectures, we showcase the effectiveness of InterAug in enhancing robustness, handling data scarcity, and maintaining resilience to diverse high background contexts. An important advantage of InterAug is its compatibility with any off-the-shelf policy, requiring no modifications to the model architecture, and it significantly outperforms existing protocols. We will release the codes upon acceptance. Our codes can be found at https://github.com/kowshikthopalli/InterAug .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3320638</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4430-5765</orcidid><orcidid>https://orcid.org/0000000344305765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.108356-108364
issn 2169-3536
2169-3536
language eng
recordid cdi_osti_scitechconnect_2008122
source IEEE Open Access Journals
subjects Annotations
Artificial neural networks
Benchmark testing
Boxes
Convergence
Data augmentation
Datasets
deep neural networks
Detectors
limited data
Object detection
Object recognition
Robustness
Training
title Improving Object Detectors by Exploiting Bounding Boxes for Augmentation Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Object%20Detectors%20by%20Exploiting%20Bounding%20Boxes%20for%20Augmentation%20Design&rft.jtitle=IEEE%20access&rft.au=Devi,%20S.&rft.date=2023&rft.volume=11&rft.spage=108356&rft.epage=108364&rft.pages=108356-108364&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3320638&rft_dat=%3Cproquest_osti_%3E2875579685%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-3710fb00ac58feefb031d933021ba0669b1bece8c5b4c1146f1e27280128107f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2875579685&rft_id=info:pmid/&rft_ieee_id=10266321&rfr_iscdi=true