Loading…

Time evolution and use of multiple times in the N -body problem

Under certain conditions it is possible to describe time evolution using different times for different particles. Use of multiple times is optional in the independent particle approximation, where interparticle interactions are removed, and the N-particle evolution operator factors into N single-par...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2003-04, Vol.67 (4), Article 042701
Main Authors: McGuire, J. H., Godunov, A. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under certain conditions it is possible to describe time evolution using different times for different particles. Use of multiple times is optional in the independent particle approximation, where interparticle interactions are removed, and the N-particle evolution operator factors into N single-particle evolution operators. In this limit one may use either a single time, with a single energy-time Fourier transform, or N different times with a different energy-time transform for each particle. The use of different times for different particles is fully justified when coherence between single-particle amplitudes is lost, e.g., if relatively strong randomly fluctuating residual fields influence each particle independently. However, when spatial correlation is present the use of multiple times is not feasible, even when the evolution of the particles is uncorrelated in time. Some calculations in simple atomic systems with and without spatial and temporal correlation between different electrons are included.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.67.042701