Loading…
Recognizing small-circuit structure in two-qubit operators
This work proposes numerical tests which determine whether a two-qubit operator has an atypically simple quantum circuit. Specifically, we describe formulas, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-NOT (CNOT) gates and...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2004-07, Vol.70 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work proposes numerical tests which determine whether a two-qubit operator has an atypically simple quantum circuit. Specifically, we describe formulas, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-NOT (CNOT) gates and all other gates being one-qubit gates. We give an algorithm for synthesizing two-qubit circuits with an optimal number of CNOT gates and illustrate it on operators appearing in quantum algorithms by Deutsch-Josza, Shor, and Grover. In another application, our explicit numerical tests allow timing a given Hamiltonian to compute a CNOT modulo one-qubit gate, when this is possible. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.70.012310 |