Loading…
Stabilization of ultracold molecules using optimal control theory
In recent experiments on ultracold matter, molecules have been produced from ultracold atoms by photoassociation, Feshbach resonances, and three-body recombination. The created molecules are translationally cold, but vibrationally highly excited. This will eventually lead them to be lost from the tr...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2004-07, Vol.70 (1), Article 013402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent experiments on ultracold matter, molecules have been produced from ultracold atoms by photoassociation, Feshbach resonances, and three-body recombination. The created molecules are translationally cold, but vibrationally highly excited. This will eventually lead them to be lost from the trap due to collisions. We propose shaped laser pulses to transfer these highly excited molecules to their ground vibrational level. Optimal control theory is employed to find the light field that will carry out this task with minimum intensity. We present results for the sodium dimer. The final target can be reached to within 99% provided the initial guess field is physically motivated. We find that the optimal fields contain the transition frequencies required by a good Franck-Condon pumping scheme. The analysis identifies the ranges of intensity and pulse duration which are able to achieve this task before any other competing processes take place. Such a scheme could produce stable ultracold molecular samples or even stable molecular Bose-Einstein condensates. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.70.013402 |