Loading…

Self-generated cooperative light emission induced by atomic recoil

The interaction of an atomic gas confined inside a cavity containing a strong electromagnetic field is numerically and theoretically investigated in a regime where recoil effects are not negligible. The spontaneous appearance of a density grating (atomic bunching) accompanied by the onset of a coher...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2004-08, Vol.70 (2), Article 023405
Main Authors: Javaloyes, J., Perrin, M., Lippi, G. L., Politi, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interaction of an atomic gas confined inside a cavity containing a strong electromagnetic field is numerically and theoretically investigated in a regime where recoil effects are not negligible. The spontaneous appearance of a density grating (atomic bunching) accompanied by the onset of a coherent, back-propagating electromagnetic wave is found to be ruled by a continuous phase transition. Numerical tests allow us to convincingly prove that the transition is steered by the appearence of a periodic atomic density modulation. Consideration of different experimental relaxation mechanisms induces us to analyze the problem in nearly analytic form, in the large detuning limit, using both a Vlasov approach and a Fokker-Planck description. The application of our predictions to recent experimental findings, reported by Kruse et al. [Phys. Rev. Lett., 91 183601 (2003)], yields a semiquantitative agreement with the observations.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.70.023405