Loading…
Quantum Monte Carlo studies of superfluid Fermi gases
We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and t...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2004-10, Vol.70 (4), Article 043602 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak{sub F}. We report results for the ground-state energy, the pairing gap {delta}, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak{sub F}0, the interaction is strong enough to form bound molecules with energy E{sub mol}. For 1/ak{sub F} > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with {delta} and gas energy per particle approaching E{sub mol}/2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5 |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.70.043602 |