Loading…
Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography
We report the quantitative characterization and analysis on the solidification of SU-8, a chemically amplified near-ultraviolet ultrathick resist, based on two-photon-absorbed (TPA) near-infrared photopolymerization. The resolution of TPA photopolymerized SU-8 voxels and lines is studied as a functi...
Saved in:
Published in: | Journal of applied physics 2005-03, Vol.97 (5) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the quantitative characterization and analysis on the solidification of SU-8, a chemically amplified near-ultraviolet ultrathick resist, based on two-photon-absorbed (TPA) near-infrared photopolymerization. The resolution of TPA photopolymerized SU-8 voxels and lines is studied as a function of laser-pulse energy, single-shot exposure time, and scanning speed. Two-photon microstereolithography using SU-8 as the matrix material was verified by the fabrication of SU-8 photoplastic structures with subdiffraction-limit resolution. We show that the nonlinear velocity dependence of TPA photopolymerization can be used as the shutter mechanism for disruptive three-dimensional (3D) lithography. This mechanism, when combined with low numerical-aperture optics is exploited for the rapid 3D microfabrication of ultrahigh-aspect-ratio (up to 50:1) photoplastic pillars, planes, and cage structures. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1856214 |