Loading…

Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation

We report a unique low-temperature growth method for epitaxial GaN on Si(111) substrates via a Zr B 2 ( 0001 ) buffer layer. The method utilizes the decomposition of a single gas-source precursor ( D 2 Ga N 3 ) 3 on the substrate surface to form GaN. The film growth process is further promoted by ir...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2005-08, Vol.87 (7), p.072107-072107-3
Main Authors: Trivedi, R. A., Tolle, J., Chizmeshya, A. V. G., Roucka, R., Ritter, Cole, Kouvetakis, J., Tsong, I. S. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c311t-db23a8ca092f516799d10ea1d43892597668a0c223367a1e7e566e1d51b38abc3
cites cdi_FETCH-LOGICAL-c311t-db23a8ca092f516799d10ea1d43892597668a0c223367a1e7e566e1d51b38abc3
container_end_page 072107-3
container_issue 7
container_start_page 072107
container_title Applied physics letters
container_volume 87
creator Trivedi, R. A.
Tolle, J.
Chizmeshya, A. V. G.
Roucka, R.
Ritter, Cole
Kouvetakis, J.
Tsong, I. S. T.
description We report a unique low-temperature growth method for epitaxial GaN on Si(111) substrates via a Zr B 2 ( 0001 ) buffer layer. The method utilizes the decomposition of a single gas-source precursor ( D 2 Ga N 3 ) 3 on the substrate surface to form GaN. The film growth process is further promoted by irradiation of ultraviolet light to enhance the growth rate and ordering of the film. The best epitaxial film quality is achieved at a growth temperature of 550 ° C with a growth rate of 3 nm ∕ min . The films exhibit intense photoluminescence emission at 10 K with a single peak at 3.48 eV , indicative of band-edge emission for a single-phase hexagonal GaN film. The growth process achieved in this study is compatible with low Si processing temperatures and also enables direct epitaxy of GaN on Zr B 2 in contrast to conventional metalorganic chemical vapor deposition based approaches.
doi_str_mv 10.1063/1.2012519
format article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20702595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-db23a8ca092f516799d10ea1d43892597668a0c223367a1e7e566e1d51b38abc3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yDgyUNqJjHZ3YMHKVqFohc9h2x22q60myVJafv2TWkFL56GGT5m_vkIuQU-Aq7lA4wEB6GgOiMD4EXBJEB5Tgacc8l0peCSXMX4k1slpByQeuo3LOGqx2DTOiCd2A86D36TFtR3NLbL1h3quo4pExhpvcvTbr5EOreRRb8ODin2bbLbHbVdQ_uFT57h1uVRan13TS5mdhnx5lSH5Pv15Wv8xqafk_fx85S5nDGxphbSls7ySswU6KKqGuBooXmUZSVUVWhdWu5Ejq0LC1ig0hqhUVDL0tZODsndca-PqTUxn0e3yOE7dMkIXvC8RGXq_ki54GMMODN9aFc27Axwc1BowJwUZvbpyMbfX_6Hs0fzx6PJHuUeU614cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Trivedi, R. A. ; Tolle, J. ; Chizmeshya, A. V. G. ; Roucka, R. ; Ritter, Cole ; Kouvetakis, J. ; Tsong, I. S. T.</creator><creatorcontrib>Trivedi, R. A. ; Tolle, J. ; Chizmeshya, A. V. G. ; Roucka, R. ; Ritter, Cole ; Kouvetakis, J. ; Tsong, I. S. T.</creatorcontrib><description>We report a unique low-temperature growth method for epitaxial GaN on Si(111) substrates via a Zr B 2 ( 0001 ) buffer layer. The method utilizes the decomposition of a single gas-source precursor ( D 2 Ga N 3 ) 3 on the substrate surface to form GaN. The film growth process is further promoted by irradiation of ultraviolet light to enhance the growth rate and ordering of the film. The best epitaxial film quality is achieved at a growth temperature of 550 ° C with a growth rate of 3 nm ∕ min . The films exhibit intense photoluminescence emission at 10 K with a single peak at 3.48 eV , indicative of band-edge emission for a single-phase hexagonal GaN film. The growth process achieved in this study is compatible with low Si processing temperatures and also enables direct epitaxy of GaN on Zr B 2 in contrast to conventional metalorganic chemical vapor deposition based approaches.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2012519</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>BUFFERS ; CHEMICAL VAPOR DEPOSITION ; CRYSTAL GROWTH ; DECOMPOSITION ; EPITAXY ; EV RANGE 01-10 ; EXCITATION ; GALLIUM NITRIDES ; IRRADIATION ; LAYERS ; MATERIALS SCIENCE ; PHOTOLUMINESCENCE ; SEMICONDUCTOR MATERIALS ; SILICON ; SUBSTRATES ; SURFACES ; TEMPERATURE RANGE 0000-0013 K ; TEMPERATURE RANGE 0400-1000 K ; ULTRAVIOLET RADIATION ; ZIRCONIUM BORIDES</subject><ispartof>Applied physics letters, 2005-08, Vol.87 (7), p.072107-072107-3</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-db23a8ca092f516799d10ea1d43892597668a0c223367a1e7e566e1d51b38abc3</citedby><cites>FETCH-LOGICAL-c311t-db23a8ca092f516799d10ea1d43892597668a0c223367a1e7e566e1d51b38abc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2012519$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27922,27923,76153</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20702595$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Trivedi, R. A.</creatorcontrib><creatorcontrib>Tolle, J.</creatorcontrib><creatorcontrib>Chizmeshya, A. V. G.</creatorcontrib><creatorcontrib>Roucka, R.</creatorcontrib><creatorcontrib>Ritter, Cole</creatorcontrib><creatorcontrib>Kouvetakis, J.</creatorcontrib><creatorcontrib>Tsong, I. S. T.</creatorcontrib><title>Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation</title><title>Applied physics letters</title><description>We report a unique low-temperature growth method for epitaxial GaN on Si(111) substrates via a Zr B 2 ( 0001 ) buffer layer. The method utilizes the decomposition of a single gas-source precursor ( D 2 Ga N 3 ) 3 on the substrate surface to form GaN. The film growth process is further promoted by irradiation of ultraviolet light to enhance the growth rate and ordering of the film. The best epitaxial film quality is achieved at a growth temperature of 550 ° C with a growth rate of 3 nm ∕ min . The films exhibit intense photoluminescence emission at 10 K with a single peak at 3.48 eV , indicative of band-edge emission for a single-phase hexagonal GaN film. The growth process achieved in this study is compatible with low Si processing temperatures and also enables direct epitaxy of GaN on Zr B 2 in contrast to conventional metalorganic chemical vapor deposition based approaches.</description><subject>BUFFERS</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>CRYSTAL GROWTH</subject><subject>DECOMPOSITION</subject><subject>EPITAXY</subject><subject>EV RANGE 01-10</subject><subject>EXCITATION</subject><subject>GALLIUM NITRIDES</subject><subject>IRRADIATION</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>PHOTOLUMINESCENCE</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SILICON</subject><subject>SUBSTRATES</subject><subject>SURFACES</subject><subject>TEMPERATURE RANGE 0000-0013 K</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>ULTRAVIOLET RADIATION</subject><subject>ZIRCONIUM BORIDES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsH3yDgyUNqJjHZ3YMHKVqFohc9h2x22q60myVJafv2TWkFL56GGT5m_vkIuQU-Aq7lA4wEB6GgOiMD4EXBJEB5Tgacc8l0peCSXMX4k1slpByQeuo3LOGqx2DTOiCd2A86D36TFtR3NLbL1h3quo4pExhpvcvTbr5EOreRRb8ODin2bbLbHbVdQ_uFT57h1uVRan13TS5mdhnx5lSH5Pv15Wv8xqafk_fx85S5nDGxphbSls7ySswU6KKqGuBooXmUZSVUVWhdWu5Ejq0LC1ig0hqhUVDL0tZODsndca-PqTUxn0e3yOE7dMkIXvC8RGXq_ki54GMMODN9aFc27Axwc1BowJwUZvbpyMbfX_6Hs0fzx6PJHuUeU614cw</recordid><startdate>20050815</startdate><enddate>20050815</enddate><creator>Trivedi, R. A.</creator><creator>Tolle, J.</creator><creator>Chizmeshya, A. V. G.</creator><creator>Roucka, R.</creator><creator>Ritter, Cole</creator><creator>Kouvetakis, J.</creator><creator>Tsong, I. S. T.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050815</creationdate><title>Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation</title><author>Trivedi, R. A. ; Tolle, J. ; Chizmeshya, A. V. G. ; Roucka, R. ; Ritter, Cole ; Kouvetakis, J. ; Tsong, I. S. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-db23a8ca092f516799d10ea1d43892597668a0c223367a1e7e566e1d51b38abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>BUFFERS</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>CRYSTAL GROWTH</topic><topic>DECOMPOSITION</topic><topic>EPITAXY</topic><topic>EV RANGE 01-10</topic><topic>EXCITATION</topic><topic>GALLIUM NITRIDES</topic><topic>IRRADIATION</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>PHOTOLUMINESCENCE</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SILICON</topic><topic>SUBSTRATES</topic><topic>SURFACES</topic><topic>TEMPERATURE RANGE 0000-0013 K</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>ULTRAVIOLET RADIATION</topic><topic>ZIRCONIUM BORIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, R. A.</creatorcontrib><creatorcontrib>Tolle, J.</creatorcontrib><creatorcontrib>Chizmeshya, A. V. G.</creatorcontrib><creatorcontrib>Roucka, R.</creatorcontrib><creatorcontrib>Ritter, Cole</creatorcontrib><creatorcontrib>Kouvetakis, J.</creatorcontrib><creatorcontrib>Tsong, I. S. T.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trivedi, R. A.</au><au>Tolle, J.</au><au>Chizmeshya, A. V. G.</au><au>Roucka, R.</au><au>Ritter, Cole</au><au>Kouvetakis, J.</au><au>Tsong, I. S. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation</atitle><jtitle>Applied physics letters</jtitle><date>2005-08-15</date><risdate>2005</risdate><volume>87</volume><issue>7</issue><spage>072107</spage><epage>072107-3</epage><pages>072107-072107-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report a unique low-temperature growth method for epitaxial GaN on Si(111) substrates via a Zr B 2 ( 0001 ) buffer layer. The method utilizes the decomposition of a single gas-source precursor ( D 2 Ga N 3 ) 3 on the substrate surface to form GaN. The film growth process is further promoted by irradiation of ultraviolet light to enhance the growth rate and ordering of the film. The best epitaxial film quality is achieved at a growth temperature of 550 ° C with a growth rate of 3 nm ∕ min . The films exhibit intense photoluminescence emission at 10 K with a single peak at 3.48 eV , indicative of band-edge emission for a single-phase hexagonal GaN film. The growth process achieved in this study is compatible with low Si processing temperatures and also enables direct epitaxy of GaN on Zr B 2 in contrast to conventional metalorganic chemical vapor deposition based approaches.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2012519</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2005-08, Vol.87 (7), p.072107-072107-3
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_20702595
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects BUFFERS
CHEMICAL VAPOR DEPOSITION
CRYSTAL GROWTH
DECOMPOSITION
EPITAXY
EV RANGE 01-10
EXCITATION
GALLIUM NITRIDES
IRRADIATION
LAYERS
MATERIALS SCIENCE
PHOTOLUMINESCENCE
SEMICONDUCTOR MATERIALS
SILICON
SUBSTRATES
SURFACES
TEMPERATURE RANGE 0000-0013 K
TEMPERATURE RANGE 0400-1000 K
ULTRAVIOLET RADIATION
ZIRCONIUM BORIDES
title Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20GaN%20growth%20on%20silicon%20substrates%20by%20single%20gas-source%20epitaxy%20and%20photo-excitation&rft.jtitle=Applied%20physics%20letters&rft.au=Trivedi,%20R.%20A.&rft.date=2005-08-15&rft.volume=87&rft.issue=7&rft.spage=072107&rft.epage=072107-3&rft.pages=072107-072107-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2012519&rft_dat=%3Cscitation_osti_%3Eapl%3C/scitation_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-db23a8ca092f516799d10ea1d43892597668a0c223367a1e7e566e1d51b38abc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true