Loading…

Criteria for exact qudit universality

We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 0...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-05, Vol.71 (5), Article 052318
Main Authors: Brennen, Gavin, O’Leary, Dianne, Bullock, Stephen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c275t-b12e19fed2764f8b1722f51c0c376e980fdcd7af27bfcf1004e0a940993029483
cites cdi_FETCH-LOGICAL-c275t-b12e19fed2764f8b1722f51c0c376e980fdcd7af27bfcf1004e0a940993029483
container_end_page
container_issue 5
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 71
creator Brennen, Gavin
O’Leary, Dianne
Bullock, Stephen
description We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H{sub jk}{sup x}=({Dirac_h}/2{pi}){omega}(vertical bar k>
doi_str_mv 10.1103/PhysRevA.71.052318
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20717729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_71_052318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-b12e19fed2764f8b1722f51c0c376e980fdcd7af27bfcf1004e0a940993029483</originalsourceid><addsrcrecordid>eNo1kE1LxDAURYMoOI7-AVcFcdn63utHmuVQdBQGFNF1SNOEiYytJpnB_ns7VN_mvsXlcjiMXSNkiJDfvWzH8GoOq4xjBiXlWJ-wBYIoUqyITo9_CSmJgp-zixA-YLqiFgt223gXjXcqsYNPzI_SMfnedy4m-94djA9q5-J4yc6s2gVz9ZdL9v5w_9Y8ppvn9VOz2qSaeBnTFsmgsKYjXhW2bpET2RI16JxXRtRgO91xZYm3VlucEAwoUYAQOUxsdb5kN_PuEKKTQU9oequHvjc6SgKOnJOYWjS3tB9C8MbKL-8-lR8lgjzqkP86JEc568h_AXQvU5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Criteria for exact qudit universality</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Brennen, Gavin ; O’Leary, Dianne ; Bullock, Stephen</creator><creatorcontrib>Brennen, Gavin ; O’Leary, Dianne ; Bullock, Stephen</creatorcontrib><description>We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0&gt;, vertical bar 1&gt;, ..., vertical bar d-1&gt;. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H{sub jk}{sup x}=({Dirac_h}/2{pi}){omega}(vertical bar k&gt;&lt;j vertical bar + vertical bar j&gt;&lt;k vertical bar) and H{sub jk}{sup y}=({Dirac_h}/2{pi}){omega}(i vertical bar k&gt;&lt;j vertical bar -i vertical bar j&gt;&lt;k vertical bar). A coupling graph results taking nodes 0, ..., d-1 and edges j{r_reversible}k iff H{sub jk}{sup x,y} are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=({Dirac_h}/2{pi}){omega} vertical bar d-1,d-1&gt;&lt;d-1,d-1 vertical bar is also allowed. We discuss implementation in the eight dimensional ground electronic states of {sup 87}Rb and construct an optimal gate sequence using Raman laser pulses.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.71.052318</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; ATOMIC AND MOLECULAR PHYSICS ; COUPLING ; GROUND STATES ; HAMILTONIANS ; HILBERT SPACE ; IMPLEMENTATION ; INFORMATION THEORY ; PULSES ; QUANTUM COMPUTERS ; RAMAN EFFECT ; RUBIDIUM ; RUBIDIUM 87</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-05, Vol.71 (5), Article 052318</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-b12e19fed2764f8b1722f51c0c376e980fdcd7af27bfcf1004e0a940993029483</citedby><cites>FETCH-LOGICAL-c275t-b12e19fed2764f8b1722f51c0c376e980fdcd7af27bfcf1004e0a940993029483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27898,27899</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20717729$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brennen, Gavin</creatorcontrib><creatorcontrib>O’Leary, Dianne</creatorcontrib><creatorcontrib>Bullock, Stephen</creatorcontrib><title>Criteria for exact qudit universality</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0&gt;, vertical bar 1&gt;, ..., vertical bar d-1&gt;. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H{sub jk}{sup x}=({Dirac_h}/2{pi}){omega}(vertical bar k&gt;&lt;j vertical bar + vertical bar j&gt;&lt;k vertical bar) and H{sub jk}{sup y}=({Dirac_h}/2{pi}){omega}(i vertical bar k&gt;&lt;j vertical bar -i vertical bar j&gt;&lt;k vertical bar). A coupling graph results taking nodes 0, ..., d-1 and edges j{r_reversible}k iff H{sub jk}{sup x,y} are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=({Dirac_h}/2{pi}){omega} vertical bar d-1,d-1&gt;&lt;d-1,d-1 vertical bar is also allowed. We discuss implementation in the eight dimensional ground electronic states of {sup 87}Rb and construct an optimal gate sequence using Raman laser pulses.</description><subject>ALGEBRA</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>COUPLING</subject><subject>GROUND STATES</subject><subject>HAMILTONIANS</subject><subject>HILBERT SPACE</subject><subject>IMPLEMENTATION</subject><subject>INFORMATION THEORY</subject><subject>PULSES</subject><subject>QUANTUM COMPUTERS</subject><subject>RAMAN EFFECT</subject><subject>RUBIDIUM</subject><subject>RUBIDIUM 87</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LxDAURYMoOI7-AVcFcdn63utHmuVQdBQGFNF1SNOEiYytJpnB_ns7VN_mvsXlcjiMXSNkiJDfvWzH8GoOq4xjBiXlWJ-wBYIoUqyITo9_CSmJgp-zixA-YLqiFgt223gXjXcqsYNPzI_SMfnedy4m-94djA9q5-J4yc6s2gVz9ZdL9v5w_9Y8ppvn9VOz2qSaeBnTFsmgsKYjXhW2bpET2RI16JxXRtRgO91xZYm3VlucEAwoUYAQOUxsdb5kN_PuEKKTQU9oequHvjc6SgKOnJOYWjS3tB9C8MbKL-8-lR8lgjzqkP86JEc568h_AXQvU5A</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Brennen, Gavin</creator><creator>O’Leary, Dianne</creator><creator>Bullock, Stephen</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050501</creationdate><title>Criteria for exact qudit universality</title><author>Brennen, Gavin ; O’Leary, Dianne ; Bullock, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-b12e19fed2764f8b1722f51c0c376e980fdcd7af27bfcf1004e0a940993029483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALGEBRA</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>COUPLING</topic><topic>GROUND STATES</topic><topic>HAMILTONIANS</topic><topic>HILBERT SPACE</topic><topic>IMPLEMENTATION</topic><topic>INFORMATION THEORY</topic><topic>PULSES</topic><topic>QUANTUM COMPUTERS</topic><topic>RAMAN EFFECT</topic><topic>RUBIDIUM</topic><topic>RUBIDIUM 87</topic><toplevel>online_resources</toplevel><creatorcontrib>Brennen, Gavin</creatorcontrib><creatorcontrib>O’Leary, Dianne</creatorcontrib><creatorcontrib>Bullock, Stephen</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennen, Gavin</au><au>O’Leary, Dianne</au><au>Bullock, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criteria for exact qudit universality</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>71</volume><issue>5</issue><artnum>052318</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0&gt;, vertical bar 1&gt;, ..., vertical bar d-1&gt;. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H{sub jk}{sup x}=({Dirac_h}/2{pi}){omega}(vertical bar k&gt;&lt;j vertical bar + vertical bar j&gt;&lt;k vertical bar) and H{sub jk}{sup y}=({Dirac_h}/2{pi}){omega}(i vertical bar k&gt;&lt;j vertical bar -i vertical bar j&gt;&lt;k vertical bar). A coupling graph results taking nodes 0, ..., d-1 and edges j{r_reversible}k iff H{sub jk}{sup x,y} are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=({Dirac_h}/2{pi}){omega} vertical bar d-1,d-1&gt;&lt;d-1,d-1 vertical bar is also allowed. We discuss implementation in the eight dimensional ground electronic states of {sup 87}Rb and construct an optimal gate sequence using Raman laser pulses.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.71.052318</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2005-05, Vol.71 (5), Article 052318
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_20717729
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects ALGEBRA
ATOMIC AND MOLECULAR PHYSICS
COUPLING
GROUND STATES
HAMILTONIANS
HILBERT SPACE
IMPLEMENTATION
INFORMATION THEORY
PULSES
QUANTUM COMPUTERS
RAMAN EFFECT
RUBIDIUM
RUBIDIUM 87
title Criteria for exact qudit universality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criteria%20for%20exact%20qudit%20universality&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Brennen,%20Gavin&rft.date=2005-05-01&rft.volume=71&rft.issue=5&rft.artnum=052318&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.71.052318&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_71_052318%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-b12e19fed2764f8b1722f51c0c376e980fdcd7af27bfcf1004e0a940993029483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true