Loading…
Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice
We consider the feasibility of creating a phase of neutral bosonic atoms in which multiple Mott-insulating states coexist in a shell structure and propose an experiment to spatially resolve such a structure. This spatially inhomogeneous phase of bosons, arising from the interplay between the confini...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-06, Vol.71 (6), Article 063601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the feasibility of creating a phase of neutral bosonic atoms in which multiple Mott-insulating states coexist in a shell structure and propose an experiment to spatially resolve such a structure. This spatially inhomogeneous phase of bosons, arising from the interplay between the confining potential and the short-ranged repulsion, has been previously predicted. While the Mott-insulator phase has been observed in an atomic gas, the spatial structure of this phase in the presence of an inhomogeneous potential has not yet been directly probed. In this paper, we give a simple recipe for creating a structure with any desired number of shells, and explore the stability of the structure under typical experimental conditions. The stability analysis gives some constraints on how successfully these states can be employed for quantum information experiments. The experimental probe we propose for observing this phase exploits transitions between two species of bosons, induced by applying a frequency-swept, oscillatory magnetic field. We present the expected experimental signatures of this probe, and show that they reflect the underlying Mott configuration for large lattice potential depth. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.71.063601 |