Loading…

Nondissipative drag of superflow in a two-component Bose gas

A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 013616
Main Authors: Fil, D. V., Shevchenko, S. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-bc486b012cbee176a0ce964ef3259c97a2cba49e184812e5001ed31ec60f1783
cites cdi_FETCH-LOGICAL-c341t-bc486b012cbee176a0ce964ef3259c97a2cba49e184812e5001ed31ec60f1783
container_end_page
container_issue 1
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 72
creator Fil, D. V.
Shevchenko, S. I.
description A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows one to determine the drag factor.
doi_str_mv 10.1103/PhysRevA.72.013616
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20718408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_72_013616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-bc486b012cbee176a0ce964ef3259c97a2cba49e184812e5001ed31ec60f1783</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKt_wFPA864zSZpswEstfkFRkd5Dms62K-1m2cSW_ntbqu9lXphn5vAwdotQIoK8_1zt0xdtx6URJaDUqM_YAMGqArUQ58c-gkJYZS7ZVUrfcIiq7IA9vMd20aTUdD43W-KL3i95rHn66aiv13HHm5Z7nnexCHHTxZbazB9jIr706Zpd1H6d6OZvDtns-Wk2eS2mHy9vk_G0CFJhLuZBVXoOKMKcCI32EMhqRbUUIxus8YeFV5awUhUKGgEgLSRS0FCjqeSQ3Z3expQbl0KTKaxCbFsK2Qkwhzs4UuJEhT6m1FPtur7Z-H7vENxRkvuX5IxwJ0nyF1DaW6I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nondissipative drag of superflow in a two-component Bose gas</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Fil, D. V. ; Shevchenko, S. I.</creator><creatorcontrib>Fil, D. V. ; Shevchenko, S. I.</creatorcontrib><description>A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows one to determine the drag factor.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.72.013616</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; ATOMS ; BOSE-EINSTEIN CONDENSATION ; BOSE-EINSTEIN GAS ; CURRENTS ; DENSITY ; JOSEPHSON EFFECT ; MAGNETIC FIELDS ; QUANTUM COMPUTERS ; QUBITS ; SCATTERING LENGTHS ; SUPERFLUIDITY ; TEMPERATURE DEPENDENCE</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 013616</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-bc486b012cbee176a0ce964ef3259c97a2cba49e184812e5001ed31ec60f1783</citedby><cites>FETCH-LOGICAL-c341t-bc486b012cbee176a0ce964ef3259c97a2cba49e184812e5001ed31ec60f1783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20718408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fil, D. V.</creatorcontrib><creatorcontrib>Shevchenko, S. I.</creatorcontrib><title>Nondissipative drag of superflow in a two-component Bose gas</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows one to determine the drag factor.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ATOMS</subject><subject>BOSE-EINSTEIN CONDENSATION</subject><subject>BOSE-EINSTEIN GAS</subject><subject>CURRENTS</subject><subject>DENSITY</subject><subject>JOSEPHSON EFFECT</subject><subject>MAGNETIC FIELDS</subject><subject>QUANTUM COMPUTERS</subject><subject>QUBITS</subject><subject>SCATTERING LENGTHS</subject><subject>SUPERFLUIDITY</subject><subject>TEMPERATURE DEPENDENCE</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKt_wFPA864zSZpswEstfkFRkd5Dms62K-1m2cSW_ntbqu9lXphn5vAwdotQIoK8_1zt0xdtx6URJaDUqM_YAMGqArUQ58c-gkJYZS7ZVUrfcIiq7IA9vMd20aTUdD43W-KL3i95rHn66aiv13HHm5Z7nnexCHHTxZbazB9jIr706Zpd1H6d6OZvDtns-Wk2eS2mHy9vk_G0CFJhLuZBVXoOKMKcCI32EMhqRbUUIxus8YeFV5awUhUKGgEgLSRS0FCjqeSQ3Z3expQbl0KTKaxCbFsK2Qkwhzs4UuJEhT6m1FPtur7Z-H7vENxRkvuX5IxwJ0nyF1DaW6I</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Fil, D. V.</creator><creator>Shevchenko, S. I.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050701</creationdate><title>Nondissipative drag of superflow in a two-component Bose gas</title><author>Fil, D. V. ; Shevchenko, S. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-bc486b012cbee176a0ce964ef3259c97a2cba49e184812e5001ed31ec60f1783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ATOMS</topic><topic>BOSE-EINSTEIN CONDENSATION</topic><topic>BOSE-EINSTEIN GAS</topic><topic>CURRENTS</topic><topic>DENSITY</topic><topic>JOSEPHSON EFFECT</topic><topic>MAGNETIC FIELDS</topic><topic>QUANTUM COMPUTERS</topic><topic>QUBITS</topic><topic>SCATTERING LENGTHS</topic><topic>SUPERFLUIDITY</topic><topic>TEMPERATURE DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fil, D. V.</creatorcontrib><creatorcontrib>Shevchenko, S. I.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fil, D. V.</au><au>Shevchenko, S. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondissipative drag of superflow in a two-component Bose gas</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>72</volume><issue>1</issue><artnum>013616</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows one to determine the drag factor.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.72.013616</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 013616
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_20718408
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects ATOMIC AND MOLECULAR PHYSICS
ATOMS
BOSE-EINSTEIN CONDENSATION
BOSE-EINSTEIN GAS
CURRENTS
DENSITY
JOSEPHSON EFFECT
MAGNETIC FIELDS
QUANTUM COMPUTERS
QUBITS
SCATTERING LENGTHS
SUPERFLUIDITY
TEMPERATURE DEPENDENCE
title Nondissipative drag of superflow in a two-component Bose gas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondissipative%20drag%20of%20superflow%20in%20a%20two-component%20Bose%20gas&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Fil,%20D.%20V.&rft.date=2005-07-01&rft.volume=72&rft.issue=1&rft.artnum=013616&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.72.013616&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_72_013616%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-bc486b012cbee176a0ce964ef3259c97a2cba49e184812e5001ed31ec60f1783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true