Loading…
Synthesis of diamondlike carbon particles in/on a water substrate by laser irradiation
We proposed two-particle synthesis techniques using a liquid as a substrate. First, utilizing liquid instead of solid substrates, particle synthesis is expected on the liquid surface. Particles sink into the liquid before the particles grow into film, because of liquid fluidity. Second, the excitati...
Saved in:
Published in: | Journal of applied physics 2005-11, Vol.98 (9) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We proposed two-particle synthesis techniques using a liquid as a substrate. First, utilizing liquid instead of solid substrates, particle synthesis is expected on the liquid surface. Particles sink into the liquid before the particles grow into film, because of liquid fluidity. Second, the excitation of a gas dissolved in water was also attempted. An ArF excimer laser beam was focused in a chamber. The 60% volume of the chamber was filled with water, in which methane was dissolved and the remaining space of the chamber was filled with methane gas. As a result, diamondlike carbon particles could be synthesized in water. The particles synthesized from methane in the gas phase were 50–200 nm in diameter, and the particles synthesized from methane dissolved in water were 200–700 nm in diameter, and no structural differences were observed between the particles of two different diameters. Energy-dispersive spectroscopy, Raman spectroscopy analysis, and high-resolution transmission electron microscopy observations revealed that particles contained a diamondlike carbon component and that graphite was attached to them. These particles were harder than graphite particles. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.2126783 |