Loading…
Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging
Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and ra...
Saved in:
Published in: | Medical physics (Lancaster) 2005-08, Vol.32 (8), p.2606-2614 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4742-e35830506c51d529720b64c6b8a656821f876739ee9cadcd21fe3702cb936bf93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4742-e35830506c51d529720b64c6b8a656821f876739ee9cadcd21fe3702cb936bf93 |
container_end_page | 2614 |
container_issue | 8 |
container_start_page | 2606 |
container_title | Medical physics (Lancaster) |
container_volume | 32 |
creator | Lovelock, D. Michael Hua, Chiaho Wang, Ping Hunt, Margie Fournier-Bidoz, Nathalie Yenice, Kamil Toner, Sean Lutz, Wendell Amols, Howard Bilsky, Mark Fuks, Zvi Yamada, Yoshiya |
description | Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager. |
doi_str_mv | 10.1118/1.1951042 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20726274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68639442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4742-e35830506c51d529720b64c6b8a656821f876739ee9cadcd21fe3702cb936bf93</originalsourceid><addsrcrecordid>eNqNkV1r1zAUh4Mo7u_0wi8gAUFQ6Mxbk-ZGGMM3mOiFXoc0PZ0ZbVKT9i_z05utHdvNxq7y9uThnN9B6CUlR5TS5j09orqmRLBHaMeE4pVgRD9GO0K0qJgg9QF6lvM5IUTymjxFB1RSzZWmO3R-7NyS7Aw4w7xMOPZ4ssnmyQc7lO3sIcwZL9mHM2xxiMGHvc1-D9eP2I9jbP3g_5VzDNgl2w2AbejwFNNcLH60Z-X7c_Skt0OGF9t6iH59-vjz5Et1-v3z15Pj08oJJVgFvG44qYl0Ne1qphUjrRROto2VtWwY7RslFdcA2tnOdeUCuCLMtZrLttf8EL1evTHP3mTnZ3C_XQwB3GwYUUwyJQr1ZqWmFP8skGcz-uxgGGyAuGQjG8m1EKyAb1fQpZhzgt5MqXSULgwl5jJ-Q80Wf2FfbdKlHaG7Ibe8C1CtwF8_wMXdJvPtxyb8sPKXbVzle_ef60maq0maWAq1RfDuwYL74H1Mt6qbup7_B-iKvu4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68639442</pqid></control><display><type>article</type><title>Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lovelock, D. Michael ; Hua, Chiaho ; Wang, Ping ; Hunt, Margie ; Fournier-Bidoz, Nathalie ; Yenice, Kamil ; Toner, Sean ; Lutz, Wendell ; Amols, Howard ; Bilsky, Mark ; Fuks, Zvi ; Yamada, Yoshiya</creator><creatorcontrib>Lovelock, D. Michael ; Hua, Chiaho ; Wang, Ping ; Hunt, Margie ; Fournier-Bidoz, Nathalie ; Yenice, Kamil ; Toner, Sean ; Lutz, Wendell ; Amols, Howard ; Bilsky, Mark ; Fuks, Zvi ; Yamada, Yoshiya</creatorcontrib><description>Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1951042</identifier><identifier>PMID: 16193791</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>amorphous semiconductors ; CALIBRATION STANDARDS ; cancer ; CARCINOMAS ; Collimation ; COLLIMATORS ; Computed tomography ; Conformal radiation treatment ; CORRECTIONS ; Dosimetry ; Equipment Design ; Equipment Failure Analysis ; ERRORS ; Humans ; Image registration ; immobilization ; Immobilization - instrumentation ; Immobilization - methods ; Intensity modulated radiation therapy ; LINEAR ACCELERATORS ; Medical imaging ; neurophysiology ; Neuroscience ; paraspinal ; PATIENTS ; RADIATION DOSE DISTRIBUTIONS ; RADIATION DOSES ; radiation therapy ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; RADIOTHERAPY ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - instrumentation ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Conformal - methods ; Reproducibility of Results ; SEMICONDUCTOR MATERIALS ; Sensitivity and Specificity ; setup uncertainty ; SILICON ; SPINAL CORD ; Spinal Neoplasms - radiotherapy ; Therapeutics ; Titanium ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods ; tumours ; VERIFICATION</subject><ispartof>Medical physics (Lancaster), 2005-08, Vol.32 (8), p.2606-2614</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2005 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4742-e35830506c51d529720b64c6b8a656821f876739ee9cadcd21fe3702cb936bf93</citedby><cites>FETCH-LOGICAL-c4742-e35830506c51d529720b64c6b8a656821f876739ee9cadcd21fe3702cb936bf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16193791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20726274$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lovelock, D. Michael</creatorcontrib><creatorcontrib>Hua, Chiaho</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Hunt, Margie</creatorcontrib><creatorcontrib>Fournier-Bidoz, Nathalie</creatorcontrib><creatorcontrib>Yenice, Kamil</creatorcontrib><creatorcontrib>Toner, Sean</creatorcontrib><creatorcontrib>Lutz, Wendell</creatorcontrib><creatorcontrib>Amols, Howard</creatorcontrib><creatorcontrib>Bilsky, Mark</creatorcontrib><creatorcontrib>Fuks, Zvi</creatorcontrib><creatorcontrib>Yamada, Yoshiya</creatorcontrib><title>Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager.</description><subject>amorphous semiconductors</subject><subject>CALIBRATION STANDARDS</subject><subject>cancer</subject><subject>CARCINOMAS</subject><subject>Collimation</subject><subject>COLLIMATORS</subject><subject>Computed tomography</subject><subject>Conformal radiation treatment</subject><subject>CORRECTIONS</subject><subject>Dosimetry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>ERRORS</subject><subject>Humans</subject><subject>Image registration</subject><subject>immobilization</subject><subject>Immobilization - instrumentation</subject><subject>Immobilization - methods</subject><subject>Intensity modulated radiation therapy</subject><subject>LINEAR ACCELERATORS</subject><subject>Medical imaging</subject><subject>neurophysiology</subject><subject>Neuroscience</subject><subject>paraspinal</subject><subject>PATIENTS</subject><subject>RADIATION DOSE DISTRIBUTIONS</subject><subject>RADIATION DOSES</subject><subject>radiation therapy</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - instrumentation</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Conformal - methods</subject><subject>Reproducibility of Results</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>Sensitivity and Specificity</subject><subject>setup uncertainty</subject><subject>SILICON</subject><subject>SPINAL CORD</subject><subject>Spinal Neoplasms - radiotherapy</subject><subject>Therapeutics</subject><subject>Titanium</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>tumours</subject><subject>VERIFICATION</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkV1r1zAUh4Mo7u_0wi8gAUFQ6Mxbk-ZGGMM3mOiFXoc0PZ0ZbVKT9i_z05utHdvNxq7y9uThnN9B6CUlR5TS5j09orqmRLBHaMeE4pVgRD9GO0K0qJgg9QF6lvM5IUTymjxFB1RSzZWmO3R-7NyS7Aw4w7xMOPZ4ssnmyQc7lO3sIcwZL9mHM2xxiMGHvc1-D9eP2I9jbP3g_5VzDNgl2w2AbejwFNNcLH60Z-X7c_Skt0OGF9t6iH59-vjz5Et1-v3z15Pj08oJJVgFvG44qYl0Ne1qphUjrRROto2VtWwY7RslFdcA2tnOdeUCuCLMtZrLttf8EL1evTHP3mTnZ3C_XQwB3GwYUUwyJQr1ZqWmFP8skGcz-uxgGGyAuGQjG8m1EKyAb1fQpZhzgt5MqXSULgwl5jJ-Q80Wf2FfbdKlHaG7Ibe8C1CtwF8_wMXdJvPtxyb8sPKXbVzle_ef60maq0maWAq1RfDuwYL74H1Mt6qbup7_B-iKvu4</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Lovelock, D. Michael</creator><creator>Hua, Chiaho</creator><creator>Wang, Ping</creator><creator>Hunt, Margie</creator><creator>Fournier-Bidoz, Nathalie</creator><creator>Yenice, Kamil</creator><creator>Toner, Sean</creator><creator>Lutz, Wendell</creator><creator>Amols, Howard</creator><creator>Bilsky, Mark</creator><creator>Fuks, Zvi</creator><creator>Yamada, Yoshiya</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>200508</creationdate><title>Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging</title><author>Lovelock, D. Michael ; Hua, Chiaho ; Wang, Ping ; Hunt, Margie ; Fournier-Bidoz, Nathalie ; Yenice, Kamil ; Toner, Sean ; Lutz, Wendell ; Amols, Howard ; Bilsky, Mark ; Fuks, Zvi ; Yamada, Yoshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4742-e35830506c51d529720b64c6b8a656821f876739ee9cadcd21fe3702cb936bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>amorphous semiconductors</topic><topic>CALIBRATION STANDARDS</topic><topic>cancer</topic><topic>CARCINOMAS</topic><topic>Collimation</topic><topic>COLLIMATORS</topic><topic>Computed tomography</topic><topic>Conformal radiation treatment</topic><topic>CORRECTIONS</topic><topic>Dosimetry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>ERRORS</topic><topic>Humans</topic><topic>Image registration</topic><topic>immobilization</topic><topic>Immobilization - instrumentation</topic><topic>Immobilization - methods</topic><topic>Intensity modulated radiation therapy</topic><topic>LINEAR ACCELERATORS</topic><topic>Medical imaging</topic><topic>neurophysiology</topic><topic>Neuroscience</topic><topic>paraspinal</topic><topic>PATIENTS</topic><topic>RADIATION DOSE DISTRIBUTIONS</topic><topic>RADIATION DOSES</topic><topic>radiation therapy</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - instrumentation</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Conformal - methods</topic><topic>Reproducibility of Results</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>Sensitivity and Specificity</topic><topic>setup uncertainty</topic><topic>SILICON</topic><topic>SPINAL CORD</topic><topic>Spinal Neoplasms - radiotherapy</topic><topic>Therapeutics</topic><topic>Titanium</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>tumours</topic><topic>VERIFICATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lovelock, D. Michael</creatorcontrib><creatorcontrib>Hua, Chiaho</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Hunt, Margie</creatorcontrib><creatorcontrib>Fournier-Bidoz, Nathalie</creatorcontrib><creatorcontrib>Yenice, Kamil</creatorcontrib><creatorcontrib>Toner, Sean</creatorcontrib><creatorcontrib>Lutz, Wendell</creatorcontrib><creatorcontrib>Amols, Howard</creatorcontrib><creatorcontrib>Bilsky, Mark</creatorcontrib><creatorcontrib>Fuks, Zvi</creatorcontrib><creatorcontrib>Yamada, Yoshiya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lovelock, D. Michael</au><au>Hua, Chiaho</au><au>Wang, Ping</au><au>Hunt, Margie</au><au>Fournier-Bidoz, Nathalie</au><au>Yenice, Kamil</au><au>Toner, Sean</au><au>Lutz, Wendell</au><au>Amols, Howard</au><au>Bilsky, Mark</au><au>Fuks, Zvi</au><au>Yamada, Yoshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2005-08</date><risdate>2005</risdate><volume>32</volume><issue>8</issue><spage>2606</spage><epage>2614</epage><pages>2606-2614</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>16193791</pmid><doi>10.1118/1.1951042</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2005-08, Vol.32 (8), p.2606-2614 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_osti_scitechconnect_20726274 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | amorphous semiconductors CALIBRATION STANDARDS cancer CARCINOMAS Collimation COLLIMATORS Computed tomography Conformal radiation treatment CORRECTIONS Dosimetry Equipment Design Equipment Failure Analysis ERRORS Humans Image registration immobilization Immobilization - instrumentation Immobilization - methods Intensity modulated radiation therapy LINEAR ACCELERATORS Medical imaging neurophysiology Neuroscience paraspinal PATIENTS RADIATION DOSE DISTRIBUTIONS RADIATION DOSES radiation therapy RADIOLOGY AND NUCLEAR MEDICINE Radiometry - methods RADIOTHERAPY Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - instrumentation Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Conformal - methods Reproducibility of Results SEMICONDUCTOR MATERIALS Sensitivity and Specificity setup uncertainty SILICON SPINAL CORD Spinal Neoplasms - radiotherapy Therapeutics Titanium Tomography, X-Ray Computed - instrumentation Tomography, X-Ray Computed - methods tumours VERIFICATION |
title | Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20setup%20of%20paraspinal%20patients%20using%20a%20noninvasive%20patient%20immobilization%20cradle%20and%20portal%20imaging&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Lovelock,%20D.%20Michael&rft.date=2005-08&rft.volume=32&rft.issue=8&rft.spage=2606&rft.epage=2614&rft.pages=2606-2614&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1951042&rft_dat=%3Cproquest_osti_%3E68639442%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4742-e35830506c51d529720b64c6b8a656821f876739ee9cadcd21fe3702cb936bf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68639442&rft_id=info:pmid/16193791&rfr_iscdi=true |