Loading…

Pair production and optical lasers

Electron-positron pair creation in a standing wave is explored using a parameter-free quantum kinetic equation. Field strengths and frequencies corresponding to modern optical lasers induce a material polarization of the QED vacuum, which may be characterized as a plasma of e+e- quasiparticle pairs...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2006-04, Vol.96 (14), p.140402-140402, Article 140402
Main Authors: Blaschke, D B, Prozorkevich, A V, Roberts, C D, Schmidt, S M, Smolyansky, S A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electron-positron pair creation in a standing wave is explored using a parameter-free quantum kinetic equation. Field strengths and frequencies corresponding to modern optical lasers induce a material polarization of the QED vacuum, which may be characterized as a plasma of e+e- quasiparticle pairs with a density of approximately 10(20) cm-3. The plasma vanishes almost completely when the laser field is zero, leaving a very small residual pair density n(r) which is the true manifestation of vacuum decay. The average pair density per period is proportional to the laser intensity but independent of the frequency nu. The density of residual pairs also grows with laser intensity but n(r) proportional to nu(2). With optical lasers at the forefront of the current generation, these dynamical QED vacuum effects can plausibly generate 5-10 observable two-photon annihilation events per laser pulse.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.96.140402