Loading…
Space-charge effects in the current-filamentation or Weibel instability
We consider how an unmagnetized plasma responds to an incoming flux of energetic electrons. We assume a return current is present and allow for the incoming electrons to have a different transverse temperature than the return current. To analyze this configuration we present a nonrelativistic theory...
Saved in:
Published in: | Physical review letters 2006-03, Vol.96 (10), p.105002-105002, Article 105002 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider how an unmagnetized plasma responds to an incoming flux of energetic electrons. We assume a return current is present and allow for the incoming electrons to have a different transverse temperature than the return current. To analyze this configuration we present a nonrelativistic theory of the current-filamentation or Weibel instability for rigorously current-neutral and nonseparable distribution functions, f(0)(p(x), p(y), p(z)) is not equal to f(x)(p(x))f(y)(p(y))f(z)(p(z)). We find that such distribution functions lead to lower growth rates because of space-charge forces that arise when the forward-going electrons pinch to a lesser degree than the colder, backward-flowing electrons. We verify the growth rate, range of unstable wave numbers, and the formation of the density filaments using particle-in-cell simulations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.96.105002 |