Loading…

Component-resolved determination of the magnetization by magnetization-induced optical second-harmonic generation

We present a method for simultaneously measuring the two normalized in-plane magnetization components in magnetic thin films that allows for the reconstruction of the magnetization angle and the normalized value of the magnetization with subnanosecond temporal resolution. The calibrated method relie...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2006-03, Vol.77 (3)
Main Authors: Gerrits, Th, Silva, T. J., Rasing, Th
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a method for simultaneously measuring the two normalized in-plane magnetization components in magnetic thin films that allows for the reconstruction of the magnetization angle and the normalized value of the magnetization with subnanosecond temporal resolution. The calibrated method relies on the large contrast associated with magnetization-induced optical second-harmonic generation, permitting measurements with a dynamic range in excess of 25dB. Calibration is achieved by the determination of the relative magnitude and phase of the essential nonlinear optical tensor components, including those of a magneto-optic origin. Ellipsometric determination of the polarization of the second-harmonic signal, when the magnetization is saturated along four in-plane Cartesian directions, is sufficient to determine the second-order nonlinear tensor components. These four directions represent the two saturated states along the longitudinal and transverse directions of the magnetization, respectively. The tensor components are subsequently used to uniquely determine the in-plane magnetization amplitude and direction.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.2179414