Loading…
Si (111) substrates as highly effective pseudomasks for selective growth of GaN material and devices by ammonia-molecular-beam epitaxy
The unique property of Si (111) as effective pseudomask substrate for selective growth of GaN by ammonia-molecular-beam epitaxy is reported. The critical nucleation temperature of GaN on Si (111) surface is found to be as low as 700°C, much lower than that on sapphire or AlN surface. As a result, se...
Saved in:
Published in: | Applied physics letters 2006-04, Vol.88 (17) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unique property of Si (111) as effective pseudomask substrate for selective growth of GaN by ammonia-molecular-beam epitaxy is reported. The critical nucleation temperature of GaN on Si (111) surface is found to be as low as 700°C, much lower than that on sapphire or AlN surface. As a result, selective growth of GaN is possible by ammonia-molecular-beam epitaxy on Si (111) substrates using a patterned AlN buffer layer. The wide range of growth temperatures (700–900°C) available for selective growth is a critical advantage for control and optimization of the facet characteristics of the selectively grown GaN patterns as required for potential fabrication of site-specific GaN or InGaN quantum dots. The demonstrated ease of selective growth of GaN on silicon has also implications in potential on-chip integration of GaN devices with silicon devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2199457 |