Loading…
Algebraic Quantum Mechanics and Pregeometry
We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of 'pregeometry' introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as 'generalized points', we su...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 324 |
container_issue | 1 |
container_start_page | 314 |
container_title | |
container_volume | 810 |
creator | Bohm, D J Davies, P G Hiley, B J |
description | We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of 'pregeometry' introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as 'generalized points', we suggest an approach that may make it possible to dispense with an a priori given space-time manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of 'neighbourhood operators', which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra. |
doi_str_mv | 10.1063/1.2158735 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20787706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29321468</sourcerecordid><originalsourceid>FETCH-LOGICAL-o214t-1d2f3f4dec307fa6cc97f83b4e2c2a15b65eb6b0d761d7daabacf58f5ccff8053</originalsourceid><addsrcrecordid>eNotj0tLxDAUhYMPsFNd-A8KghvpeJM0jy6HYXzAiAoK7kp6ezNWOq026cJ_b2FcHTgcPr7D2CWHJQctb_lScGWNVEcs4Urx3Giuj9kC5qoACVydsASgLHJRyI8ztgjhC0CUxtiE3ay6HdWjazF7nVwfp332RPjp-hZD5vomexlpR8Oe4vh7zk696wJd_GfK3u82b-uHfPt8_7hebfNB8CLmvBFe-qIhlGC804il8VbWBQkUjqtaK6p1Dc3s2ZjGudqhV9YrRO8tKJmyqwN3CLGtArZxNsKh7wljJcBYY-bfKbs-rL7H4WeiEKt9G5C6zvU0TKESpZx1tJV_O0ZTGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29321468</pqid></control><display><type>conference_proceeding</type><title>Algebraic Quantum Mechanics and Pregeometry</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bohm, D J ; Davies, P G ; Hiley, B J</creator><creatorcontrib>Bohm, D J ; Davies, P G ; Hiley, B J</creatorcontrib><description>We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of 'pregeometry' introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as 'generalized points', we suggest an approach that may make it possible to dispense with an a priori given space-time manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of 'neighbourhood operators', which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735403015</identifier><identifier>ISBN: 9780735403017</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.2158735</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; CLIFFORD ALGEBRA ; GEOMETRY ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM FIELD THEORY ; QUANTUM MECHANICS ; ROTATION ; SPACE-TIME ; SYMMETRY</subject><ispartof>AIP conference proceedings, 2006, Vol.810 (1), p.314-324</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20787706$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohm, D J</creatorcontrib><creatorcontrib>Davies, P G</creatorcontrib><creatorcontrib>Hiley, B J</creatorcontrib><title>Algebraic Quantum Mechanics and Pregeometry</title><title>AIP conference proceedings</title><description>We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of 'pregeometry' introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as 'generalized points', we suggest an approach that may make it possible to dispense with an a priori given space-time manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of 'neighbourhood operators', which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.</description><subject>ALGEBRA</subject><subject>CLIFFORD ALGEBRA</subject><subject>GEOMETRY</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM MECHANICS</subject><subject>ROTATION</subject><subject>SPACE-TIME</subject><subject>SYMMETRY</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>0735403015</isbn><isbn>9780735403017</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj0tLxDAUhYMPsFNd-A8KghvpeJM0jy6HYXzAiAoK7kp6ezNWOq026cJ_b2FcHTgcPr7D2CWHJQctb_lScGWNVEcs4Urx3Giuj9kC5qoACVydsASgLHJRyI8ztgjhC0CUxtiE3ay6HdWjazF7nVwfp332RPjp-hZD5vomexlpR8Oe4vh7zk696wJd_GfK3u82b-uHfPt8_7hebfNB8CLmvBFe-qIhlGC804il8VbWBQkUjqtaK6p1Dc3s2ZjGudqhV9YrRO8tKJmyqwN3CLGtArZxNsKh7wljJcBYY-bfKbs-rL7H4WeiEKt9G5C6zvU0TKESpZx1tJV_O0ZTGQ</recordid><startdate>20060104</startdate><enddate>20060104</enddate><creator>Bohm, D J</creator><creator>Davies, P G</creator><creator>Hiley, B J</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20060104</creationdate><title>Algebraic Quantum Mechanics and Pregeometry</title><author>Bohm, D J ; Davies, P G ; Hiley, B J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o214t-1d2f3f4dec307fa6cc97f83b4e2c2a15b65eb6b0d761d7daabacf58f5ccff8053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGEBRA</topic><topic>CLIFFORD ALGEBRA</topic><topic>GEOMETRY</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM MECHANICS</topic><topic>ROTATION</topic><topic>SPACE-TIME</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohm, D J</creatorcontrib><creatorcontrib>Davies, P G</creatorcontrib><creatorcontrib>Hiley, B J</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohm, D J</au><au>Davies, P G</au><au>Hiley, B J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algebraic Quantum Mechanics and Pregeometry</atitle><btitle>AIP conference proceedings</btitle><date>2006-01-04</date><risdate>2006</risdate><volume>810</volume><issue>1</issue><spage>314</spage><epage>324</epage><pages>314-324</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>0735403015</isbn><isbn>9780735403017</isbn><abstract>We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of 'pregeometry' introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as 'generalized points', we suggest an approach that may make it possible to dispense with an a priori given space-time manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of 'neighbourhood operators', which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.</abstract><cop>United States</cop><doi>10.1063/1.2158735</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2006, Vol.810 (1), p.314-324 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_20787706 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | ALGEBRA CLIFFORD ALGEBRA GEOMETRY PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QUANTUM FIELD THEORY QUANTUM MECHANICS ROTATION SPACE-TIME SYMMETRY |
title | Algebraic Quantum Mechanics and Pregeometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algebraic%20Quantum%20Mechanics%20and%20Pregeometry&rft.btitle=AIP%20conference%20proceedings&rft.au=Bohm,%20D%20J&rft.date=2006-01-04&rft.volume=810&rft.issue=1&rft.spage=314&rft.epage=324&rft.pages=314-324&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=0735403015&rft.isbn_list=9780735403017&rft_id=info:doi/10.1063/1.2158735&rft_dat=%3Cproquest_osti_%3E29321468%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o214t-1d2f3f4dec307fa6cc97f83b4e2c2a15b65eb6b0d761d7daabacf58f5ccff8053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29321468&rft_id=info:pmid/&rfr_iscdi=true |