Loading…

Regular perturbation solution of the Elenbaas-Heller equation

The Elenbaas-Heller equation is nondimensionalized and solved using regular perturbation theory to provide closed-form analytical solutions to describe structures of cylindrically symmetrical steady electric arc discharges with negligible radiant heat transfer. Based on available data, it is assumed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2006-02, Vol.99 (3), p.034906-034906-6
Main Author: Shaw, B. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-976281a313948a9da87eb84b8279d4ec97f453617a42531b28a59584d3ba80c13
cites cdi_FETCH-LOGICAL-c312t-976281a313948a9da87eb84b8279d4ec97f453617a42531b28a59584d3ba80c13
container_end_page 034906-6
container_issue 3
container_start_page 034906
container_title Journal of applied physics
container_volume 99
creator Shaw, B. D.
description The Elenbaas-Heller equation is nondimensionalized and solved using regular perturbation theory to provide closed-form analytical solutions to describe structures of cylindrically symmetrical steady electric arc discharges with negligible radiant heat transfer. Based on available data, it is assumed that the electrical conductivity varies with the heat-flux potential in an Arrhenius fashion. The leading-order solution is equivalent to an asymptotic solution proposed by Kuiken [ J. Appl. Phys. 58 , 1833 ( 1991 ) ]. Higher-order terms are also derived in the present paper, and it is shown that quantitatively accurate analytical solutions can be developed when higher-order terms are included. Analysis shows that appreciable Joule heating is restricted to an inner zone when a dimensionless parameter is large relative to unity, leading to arc-channel models suggested by previous investigators.
doi_str_mv 10.1063/1.2168026
format article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20787873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-976281a313948a9da87eb84b8279d4ec97f453617a42531b28a59584d3ba80c13</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFYP_oOAJw-pO7tJdvagIKVaoSCInpfNZmIjMam7m4P_vm3agxeZw5vDx4P3MXYNfAa8kHcwE1AgF8UJmwBHnao856dswrmAFLXS5-wihC_OAVDqCbt_o8-htT7ZkI-DL21s-i4JfTuMT18ncU3JoqWutDakS2pb8gn9DCN4yc5q2wa6OuaUfTwt3ufLdPX6_DJ_XKVOgoipVoVAsBKkztDqyqKiErMShdJVRk6rOstlAcpmIpdQCrS5zjGrZGmRO5BTdnPo7UNsTHBNJLd2fdeRi0ZwhbuTO-r2QDnfh-CpNhvffFv_a4CbvR0D5mhnxz4c2H3ZuOV_-KjI_FUktxWMauM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regular perturbation solution of the Elenbaas-Heller equation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Shaw, B. D.</creator><creatorcontrib>Shaw, B. D.</creatorcontrib><description>The Elenbaas-Heller equation is nondimensionalized and solved using regular perturbation theory to provide closed-form analytical solutions to describe structures of cylindrically symmetrical steady electric arc discharges with negligible radiant heat transfer. Based on available data, it is assumed that the electrical conductivity varies with the heat-flux potential in an Arrhenius fashion. The leading-order solution is equivalent to an asymptotic solution proposed by Kuiken [ J. Appl. Phys. 58 , 1833 ( 1991 ) ]. Higher-order terms are also derived in the present paper, and it is shown that quantitatively accurate analytical solutions can be developed when higher-order terms are included. Analysis shows that appreciable Joule heating is restricted to an inner zone when a dimensionless parameter is large relative to unity, leading to arc-channel models suggested by previous investigators.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2168026</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ANALYTICAL SOLUTION ; ASYMPTOTIC SOLUTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; ELECTRIC ARCS ; ELECTRIC CONDUCTIVITY ; EQUATIONS ; HEAT FLUX ; JOULE HEATING ; PERTURBATION THEORY ; RADIANT HEAT TRANSFER</subject><ispartof>Journal of applied physics, 2006-02, Vol.99 (3), p.034906-034906-6</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-976281a313948a9da87eb84b8279d4ec97f453617a42531b28a59584d3ba80c13</citedby><cites>FETCH-LOGICAL-c312t-976281a313948a9da87eb84b8279d4ec97f453617a42531b28a59584d3ba80c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20787873$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, B. D.</creatorcontrib><title>Regular perturbation solution of the Elenbaas-Heller equation</title><title>Journal of applied physics</title><description>The Elenbaas-Heller equation is nondimensionalized and solved using regular perturbation theory to provide closed-form analytical solutions to describe structures of cylindrically symmetrical steady electric arc discharges with negligible radiant heat transfer. Based on available data, it is assumed that the electrical conductivity varies with the heat-flux potential in an Arrhenius fashion. The leading-order solution is equivalent to an asymptotic solution proposed by Kuiken [ J. Appl. Phys. 58 , 1833 ( 1991 ) ]. Higher-order terms are also derived in the present paper, and it is shown that quantitatively accurate analytical solutions can be developed when higher-order terms are included. Analysis shows that appreciable Joule heating is restricted to an inner zone when a dimensionless parameter is large relative to unity, leading to arc-channel models suggested by previous investigators.</description><subject>ANALYTICAL SOLUTION</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>ELECTRIC ARCS</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>EQUATIONS</subject><subject>HEAT FLUX</subject><subject>JOULE HEATING</subject><subject>PERTURBATION THEORY</subject><subject>RADIANT HEAT TRANSFER</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFYP_oOAJw-pO7tJdvagIKVaoSCInpfNZmIjMam7m4P_vm3agxeZw5vDx4P3MXYNfAa8kHcwE1AgF8UJmwBHnao856dswrmAFLXS5-wihC_OAVDqCbt_o8-htT7ZkI-DL21s-i4JfTuMT18ncU3JoqWutDakS2pb8gn9DCN4yc5q2wa6OuaUfTwt3ufLdPX6_DJ_XKVOgoipVoVAsBKkztDqyqKiErMShdJVRk6rOstlAcpmIpdQCrS5zjGrZGmRO5BTdnPo7UNsTHBNJLd2fdeRi0ZwhbuTO-r2QDnfh-CpNhvffFv_a4CbvR0D5mhnxz4c2H3ZuOV_-KjI_FUktxWMauM</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Shaw, B. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060201</creationdate><title>Regular perturbation solution of the Elenbaas-Heller equation</title><author>Shaw, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-976281a313948a9da87eb84b8279d4ec97f453617a42531b28a59584d3ba80c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>ELECTRIC ARCS</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>EQUATIONS</topic><topic>HEAT FLUX</topic><topic>JOULE HEATING</topic><topic>PERTURBATION THEORY</topic><topic>RADIANT HEAT TRANSFER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, B. D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, B. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular perturbation solution of the Elenbaas-Heller equation</atitle><jtitle>Journal of applied physics</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>99</volume><issue>3</issue><spage>034906</spage><epage>034906-6</epage><pages>034906-034906-6</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The Elenbaas-Heller equation is nondimensionalized and solved using regular perturbation theory to provide closed-form analytical solutions to describe structures of cylindrically symmetrical steady electric arc discharges with negligible radiant heat transfer. Based on available data, it is assumed that the electrical conductivity varies with the heat-flux potential in an Arrhenius fashion. The leading-order solution is equivalent to an asymptotic solution proposed by Kuiken [ J. Appl. Phys. 58 , 1833 ( 1991 ) ]. Higher-order terms are also derived in the present paper, and it is shown that quantitatively accurate analytical solutions can be developed when higher-order terms are included. Analysis shows that appreciable Joule heating is restricted to an inner zone when a dimensionless parameter is large relative to unity, leading to arc-channel models suggested by previous investigators.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2168026</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2006-02, Vol.99 (3), p.034906-034906-6
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_20787873
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects ANALYTICAL SOLUTION
ASYMPTOTIC SOLUTIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
ELECTRIC ARCS
ELECTRIC CONDUCTIVITY
EQUATIONS
HEAT FLUX
JOULE HEATING
PERTURBATION THEORY
RADIANT HEAT TRANSFER
title Regular perturbation solution of the Elenbaas-Heller equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20perturbation%20solution%20of%20the%20Elenbaas-Heller%20equation&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Shaw,%20B.%20D.&rft.date=2006-02-01&rft.volume=99&rft.issue=3&rft.spage=034906&rft.epage=034906-6&rft.pages=034906-034906-6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.2168026&rft_dat=%3Cscitation_osti_%3Ejap%3C/scitation_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-976281a313948a9da87eb84b8279d4ec97f453617a42531b28a59584d3ba80c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true