Loading…

Anatomy of a gauge theory

We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we...

Full description

Saved in:
Bibliographic Details
Published in:Annals of physics 2006-12, Vol.321 (12), p.2757-2781
Main Author: Kreimer, Dirk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003
cites cdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003
container_end_page 2781
container_issue 12
container_start_page 2757
container_title Annals of physics
container_volume 321
creator Kreimer, Dirk
description We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.
doi_str_mv 10.1016/j.aop.2006.01.004
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20845946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491606000248</els_id><sourcerecordid>1173015021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA7pFMCecHcexxVRVfEmVWEBis1zn0iaicbFdpP57HIWZ6W543tNzLyELCgUFKu77wrhDwQBEAbQA4GdkRkGJHMrq85zMAKDMuaLiklyF0ANQyis5I4vlYKLbnzLXZibbmuMWs7hD50_X5KI1XwFv_uacfDw9vq9e8vXb8-tquc5tWbGYUwaq5EpyyyVapqiVqhK1EoKntVGMcWYQBaA1JbMUN2zTbLBujYFaJKs5uZvuuhA7HWwX0e6sGwa0UTOQvFJcJOp2og7efR8xRN27ox-SmGZlVUugUiaITpD1LgSPrT74bm_8SVPQY02616kmPdakgepUU8o8TBlMP_506EcFHCw2nR8NGtf9k_4FsntsNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235780188</pqid></control><display><type>article</type><title>Anatomy of a gauge theory</title><source>ScienceDirect Freedom Collection</source><creator>Kreimer, Dirk</creator><creatorcontrib>Kreimer, Dirk</creatorcontrib><description>We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2006.01.004</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ALGEBRA ; DYSON REPRESENTATION ; EQUATIONS OF MOTION ; GAUGE INVARIANCE ; LIE GROUPS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM FIELD THEORY</subject><ispartof>Annals of physics, 2006-12, Vol.321 (12), p.2757-2781</ispartof><rights>2006 Elsevier Inc.</rights><rights>Copyright © 2006 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</citedby><cites>FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20845946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreimer, Dirk</creatorcontrib><title>Anatomy of a gauge theory</title><title>Annals of physics</title><description>We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.</description><subject>ALGEBRA</subject><subject>DYSON REPRESENTATION</subject><subject>EQUATIONS OF MOTION</subject><subject>GAUGE INVARIANCE</subject><subject>LIE GROUPS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM FIELD THEORY</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA7pFMCecHcexxVRVfEmVWEBis1zn0iaicbFdpP57HIWZ6W543tNzLyELCgUFKu77wrhDwQBEAbQA4GdkRkGJHMrq85zMAKDMuaLiklyF0ANQyis5I4vlYKLbnzLXZibbmuMWs7hD50_X5KI1XwFv_uacfDw9vq9e8vXb8-tquc5tWbGYUwaq5EpyyyVapqiVqhK1EoKntVGMcWYQBaA1JbMUN2zTbLBujYFaJKs5uZvuuhA7HWwX0e6sGwa0UTOQvFJcJOp2og7efR8xRN27ox-SmGZlVUugUiaITpD1LgSPrT74bm_8SVPQY02616kmPdakgepUU8o8TBlMP_506EcFHCw2nR8NGtf9k_4FsntsNQ</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Kreimer, Dirk</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20061201</creationdate><title>Anatomy of a gauge theory</title><author>Kreimer, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGEBRA</topic><topic>DYSON REPRESENTATION</topic><topic>EQUATIONS OF MOTION</topic><topic>GAUGE INVARIANCE</topic><topic>LIE GROUPS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM FIELD THEORY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreimer, Dirk</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreimer, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomy of a gauge theory</atitle><jtitle>Annals of physics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>321</volume><issue>12</issue><spage>2757</spage><epage>2781</epage><pages>2757-2781</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2006.01.004</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2006-12, Vol.321 (12), p.2757-2781
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_20845946
source ScienceDirect Freedom Collection
subjects ALGEBRA
DYSON REPRESENTATION
EQUATIONS OF MOTION
GAUGE INVARIANCE
LIE GROUPS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTUM FIELD THEORY
title Anatomy of a gauge theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomy%20of%20a%20gauge%20theory&rft.jtitle=Annals%20of%20physics&rft.au=Kreimer,%20Dirk&rft.date=2006-12-01&rft.volume=321&rft.issue=12&rft.spage=2757&rft.epage=2781&rft.pages=2757-2781&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2006.01.004&rft_dat=%3Cproquest_osti_%3E1173015021%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235780188&rft_id=info:pmid/&rfr_iscdi=true