Loading…
Anatomy of a gauge theory
We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we...
Saved in:
Published in: | Annals of physics 2006-12, Vol.321 (12), p.2757-2781 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003 |
container_end_page | 2781 |
container_issue | 12 |
container_start_page | 2757 |
container_title | Annals of physics |
container_volume | 321 |
creator | Kreimer, Dirk |
description | We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams. |
doi_str_mv | 10.1016/j.aop.2006.01.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20845946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491606000248</els_id><sourcerecordid>1173015021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA7pFMCecHcexxVRVfEmVWEBis1zn0iaicbFdpP57HIWZ6W543tNzLyELCgUFKu77wrhDwQBEAbQA4GdkRkGJHMrq85zMAKDMuaLiklyF0ANQyis5I4vlYKLbnzLXZibbmuMWs7hD50_X5KI1XwFv_uacfDw9vq9e8vXb8-tquc5tWbGYUwaq5EpyyyVapqiVqhK1EoKntVGMcWYQBaA1JbMUN2zTbLBujYFaJKs5uZvuuhA7HWwX0e6sGwa0UTOQvFJcJOp2og7efR8xRN27ox-SmGZlVUugUiaITpD1LgSPrT74bm_8SVPQY02616kmPdakgepUU8o8TBlMP_506EcFHCw2nR8NGtf9k_4FsntsNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235780188</pqid></control><display><type>article</type><title>Anatomy of a gauge theory</title><source>ScienceDirect Freedom Collection</source><creator>Kreimer, Dirk</creator><creatorcontrib>Kreimer, Dirk</creatorcontrib><description>We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2006.01.004</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ALGEBRA ; DYSON REPRESENTATION ; EQUATIONS OF MOTION ; GAUGE INVARIANCE ; LIE GROUPS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM FIELD THEORY</subject><ispartof>Annals of physics, 2006-12, Vol.321 (12), p.2757-2781</ispartof><rights>2006 Elsevier Inc.</rights><rights>Copyright © 2006 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</citedby><cites>FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20845946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreimer, Dirk</creatorcontrib><title>Anatomy of a gauge theory</title><title>Annals of physics</title><description>We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.</description><subject>ALGEBRA</subject><subject>DYSON REPRESENTATION</subject><subject>EQUATIONS OF MOTION</subject><subject>GAUGE INVARIANCE</subject><subject>LIE GROUPS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM FIELD THEORY</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA7pFMCecHcexxVRVfEmVWEBis1zn0iaicbFdpP57HIWZ6W543tNzLyELCgUFKu77wrhDwQBEAbQA4GdkRkGJHMrq85zMAKDMuaLiklyF0ANQyis5I4vlYKLbnzLXZibbmuMWs7hD50_X5KI1XwFv_uacfDw9vq9e8vXb8-tquc5tWbGYUwaq5EpyyyVapqiVqhK1EoKntVGMcWYQBaA1JbMUN2zTbLBujYFaJKs5uZvuuhA7HWwX0e6sGwa0UTOQvFJcJOp2og7efR8xRN27ox-SmGZlVUugUiaITpD1LgSPrT74bm_8SVPQY02616kmPdakgepUU8o8TBlMP_506EcFHCw2nR8NGtf9k_4FsntsNQ</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Kreimer, Dirk</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20061201</creationdate><title>Anatomy of a gauge theory</title><author>Kreimer, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGEBRA</topic><topic>DYSON REPRESENTATION</topic><topic>EQUATIONS OF MOTION</topic><topic>GAUGE INVARIANCE</topic><topic>LIE GROUPS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM FIELD THEORY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreimer, Dirk</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreimer, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomy of a gauge theory</atitle><jtitle>Annals of physics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>321</volume><issue>12</issue><spage>2757</spage><epage>2781</epage><pages>2757-2781</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson–Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov–Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2006.01.004</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2006-12, Vol.321 (12), p.2757-2781 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_20845946 |
source | ScienceDirect Freedom Collection |
subjects | ALGEBRA DYSON REPRESENTATION EQUATIONS OF MOTION GAUGE INVARIANCE LIE GROUPS Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QUANTUM FIELD THEORY |
title | Anatomy of a gauge theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomy%20of%20a%20gauge%20theory&rft.jtitle=Annals%20of%20physics&rft.au=Kreimer,%20Dirk&rft.date=2006-12-01&rft.volume=321&rft.issue=12&rft.spage=2757&rft.epage=2781&rft.pages=2757-2781&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2006.01.004&rft_dat=%3Cproquest_osti_%3E1173015021%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-120934984c48ec291c8956796641c8d92242aee60eca32c1eb2bdbe7faa076003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235780188&rft_id=info:pmid/&rfr_iscdi=true |