Loading…

Role of ions in a crossed-field diode

The effect of ions in a magnetically insulated crossed-field gap is studied using a single particle orbit model, shear flow model, and particle-in-cell simulation. It is found that, in general, the presence of ions in a crossed-field gap always increases the electrons' excursion toward the anod...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2007-01, Vol.98 (1), p.015002-015002, Article 015002
Main Authors: Lau, Y Y, Luginsland, J W, Cartwright, K L, Haworth, M D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of ions in a magnetically insulated crossed-field gap is studied using a single particle orbit model, shear flow model, and particle-in-cell simulation. It is found that, in general, the presence of ions in a crossed-field gap always increases the electrons' excursion toward the anode region, regardless of the location of the ions. Thus, the rate at which the electrons migrate toward the anode, which is a measure of the diode closure rate, is related to the rate at which ions are introduced into the crossed-field gap. This anode migration of electrons is unrelated to crossed-field ambipolar diffusion. The implications of these findings are explored, such as pulse shortening in relativistic magnetrons and bipolar flows in pulsed-power systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.98.015002