Loading…
Influence of Shock Prestraining and Grain Size on the Dynamic-Tensile-Extrusion Response of Copper: Experiments and Simulation
The mechanical behavior of, and damage evolution in high-purity Cu is influenced by strain rate, temperature, stress state, grain size, and shock prestraining. The effects of grain size on the tensile mechanical response of high-purity Cu have been probed and are correlated with the evolution of the...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanical behavior of, and damage evolution in high-purity Cu is influenced by strain rate, temperature, stress state, grain size, and shock prestraining. The effects of grain size on the tensile mechanical response of high-purity Cu have been probed and are correlated with the evolution of the substructure. The dynamic extrusion response of shock prestrained Cu demonstrates the significant influence of grain size on the large-strain dynamic tensile ductility of high-purity copper. Eulerian hydrocode simulations utilizing the Mechanical Threshold Stress constitutive model were performed to provide insight into the dynamic extrusion process. Quantitative comparisons between the predicted and measured deformation topologies and extrusion rates are presented. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.2263424 |