Loading…
Melting Behavior of Ashes from the Co-combustion of Coal and Straw
Straw may be used today as a substitute fuel to lower the greenhouse gas emissions from traditional coal-fired power plants and provide green-based electricity. It may also provide an alternative source of income to the local farmers helping the developed countries to support sustainable development...
Saved in:
Published in: | Energy & fuels 2007-09, Vol.21 (5), p.3004-3009 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a386t-4bbf290b74f733b9249f31b7f9587f9ecc90703a5671fff89afc1ace96f772fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a386t-4bbf290b74f733b9249f31b7f9587f9ecc90703a5671fff89afc1ace96f772fd3 |
container_end_page | 3009 |
container_issue | 5 |
container_start_page | 3004 |
container_title | Energy & fuels |
container_volume | 21 |
creator | Arvelakis, S Frandsen, F. J |
description | Straw may be used today as a substitute fuel to lower the greenhouse gas emissions from traditional coal-fired power plants and provide green-based electricity. It may also provide an alternative source of income to the local farmers helping the developed countries to support sustainable development. The use of straw as a co-firing feedstock in traditional coal-fired plants is associated with operational problems, such as deposition, agglomeration, and/or corrosion, mainly because of the higher amounts of alkali metals and chlorine in straw compared to coal. This may lead to unscheduled shutdowns and costly repairs, increasing the operational costs and the cost of the produced power. In this paper, the melting characteristics of several ash fractions sampled from different parts of a pilot-scale pulverized fuel (PF) boiler operating with different coal/straw mixtures is determined by measuring the ash viscosity using a high-temperature rotational viscometer. The produced data provide information on the melting of the ash material, its flow characteristics, and the rates of crystallization and recrystallization, as a function of the temperature. This information may be used to modify the temperature profile in the different parts of the boiler to reduce the deposition of the ash material. The results show that the straw in the co-combustion mixture changes the viscosity characteristics of the produced ash fractions. The viscosity of the different ash fractions is lowered, as the percentage of straw in the co-combustion mixture increases, and leads to higher stickiness of the produced ash particles at lower temperatures. |
doi_str_mv | 10.1021/ef070045m |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20961454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20094839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-4bbf290b74f733b9249f31b7f9587f9ecc90703a5671fff89afc1ace96f772fd3</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEuVx4B9EQiBxCKxjO46PtLwpAqkgjpZjbBpI4mK7PP49rorgwmX3MN_OjgahHQyHGAp8ZCxwAMq6FTTArICcQSFW0QCqiudQFnQdbYTwAgAlqdgADW9MG5v-ORuaqXpvnM-czY7D1ITMetdlcWqykcu16-p5iI3rF_rIqTZT_VM2iV59bKE1q9pgtn_2Jno4O70fXeTj2_PL0fE4V6QqY07r2hYCak4tJ6QWBRWW4Jpbwao0jNYiRSeKlRxbayuhrMZKG1Fazgv7RDbR7tLXpSAy6CYaPdWu742OsgBRYspoovaX1My7t7kJUXZN0KZtVW_cPCQQBK2ISODBEtTeheCNlTPfdMp_SQxy0aX87TKxez-mKmjVWq963YS_A5F4oAvPfMk1IZrPX135V1lywpm8v5vI60d2wq-GpTz_81U6yBc3930q8J__3w0ajLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20094839</pqid></control><display><type>article</type><title>Melting Behavior of Ashes from the Co-combustion of Coal and Straw</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Arvelakis, S ; Frandsen, F. J</creator><creatorcontrib>Arvelakis, S ; Frandsen, F. J</creatorcontrib><description>Straw may be used today as a substitute fuel to lower the greenhouse gas emissions from traditional coal-fired power plants and provide green-based electricity. It may also provide an alternative source of income to the local farmers helping the developed countries to support sustainable development. The use of straw as a co-firing feedstock in traditional coal-fired plants is associated with operational problems, such as deposition, agglomeration, and/or corrosion, mainly because of the higher amounts of alkali metals and chlorine in straw compared to coal. This may lead to unscheduled shutdowns and costly repairs, increasing the operational costs and the cost of the produced power. In this paper, the melting characteristics of several ash fractions sampled from different parts of a pilot-scale pulverized fuel (PF) boiler operating with different coal/straw mixtures is determined by measuring the ash viscosity using a high-temperature rotational viscometer. The produced data provide information on the melting of the ash material, its flow characteristics, and the rates of crystallization and recrystallization, as a function of the temperature. This information may be used to modify the temperature profile in the different parts of the boiler to reduce the deposition of the ash material. The results show that the straw in the co-combustion mixture changes the viscosity characteristics of the produced ash fractions. The viscosity of the different ash fractions is lowered, as the percentage of straw in the co-combustion mixture increases, and leads to higher stickiness of the produced ash particles at lower temperatures.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef070045m</identifier><identifier>CODEN: ENFUEM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>01 COAL, LIGNITE, AND PEAT ; 09 BIOMASS FUELS ; ADHESION ; Applied sciences ; ASHES ; BOILERS ; COAL ; COCOMBUSTION ; Combustion of heterogeneous mixtures. Incineration ; Combustion. Flame ; CRYSTALLIZATION ; DEPOSITION ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; MELTING ; PULVERIZED FUELS ; STRAW ; Theoretical studies. Data and constants. Metering ; VISCOSITY</subject><ispartof>Energy & fuels, 2007-09, Vol.21 (5), p.3004-3009</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-4bbf290b74f733b9249f31b7f9587f9ecc90703a5671fff89afc1ace96f772fd3</citedby><cites>FETCH-LOGICAL-a386t-4bbf290b74f733b9249f31b7f9587f9ecc90703a5671fff89afc1ace96f772fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19102049$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20961454$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arvelakis, S</creatorcontrib><creatorcontrib>Frandsen, F. J</creatorcontrib><title>Melting Behavior of Ashes from the Co-combustion of Coal and Straw</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>Straw may be used today as a substitute fuel to lower the greenhouse gas emissions from traditional coal-fired power plants and provide green-based electricity. It may also provide an alternative source of income to the local farmers helping the developed countries to support sustainable development. The use of straw as a co-firing feedstock in traditional coal-fired plants is associated with operational problems, such as deposition, agglomeration, and/or corrosion, mainly because of the higher amounts of alkali metals and chlorine in straw compared to coal. This may lead to unscheduled shutdowns and costly repairs, increasing the operational costs and the cost of the produced power. In this paper, the melting characteristics of several ash fractions sampled from different parts of a pilot-scale pulverized fuel (PF) boiler operating with different coal/straw mixtures is determined by measuring the ash viscosity using a high-temperature rotational viscometer. The produced data provide information on the melting of the ash material, its flow characteristics, and the rates of crystallization and recrystallization, as a function of the temperature. This information may be used to modify the temperature profile in the different parts of the boiler to reduce the deposition of the ash material. The results show that the straw in the co-combustion mixture changes the viscosity characteristics of the produced ash fractions. The viscosity of the different ash fractions is lowered, as the percentage of straw in the co-combustion mixture increases, and leads to higher stickiness of the produced ash particles at lower temperatures.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>09 BIOMASS FUELS</subject><subject>ADHESION</subject><subject>Applied sciences</subject><subject>ASHES</subject><subject>BOILERS</subject><subject>COAL</subject><subject>COCOMBUSTION</subject><subject>Combustion of heterogeneous mixtures. Incineration</subject><subject>Combustion. Flame</subject><subject>CRYSTALLIZATION</subject><subject>DEPOSITION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>MELTING</subject><subject>PULVERIZED FUELS</subject><subject>STRAW</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>VISCOSITY</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEuVx4B9EQiBxCKxjO46PtLwpAqkgjpZjbBpI4mK7PP49rorgwmX3MN_OjgahHQyHGAp8ZCxwAMq6FTTArICcQSFW0QCqiudQFnQdbYTwAgAlqdgADW9MG5v-ORuaqXpvnM-czY7D1ITMetdlcWqykcu16-p5iI3rF_rIqTZT_VM2iV59bKE1q9pgtn_2Jno4O70fXeTj2_PL0fE4V6QqY07r2hYCak4tJ6QWBRWW4Jpbwao0jNYiRSeKlRxbayuhrMZKG1Fazgv7RDbR7tLXpSAy6CYaPdWu742OsgBRYspoovaX1My7t7kJUXZN0KZtVW_cPCQQBK2ISODBEtTeheCNlTPfdMp_SQxy0aX87TKxez-mKmjVWq963YS_A5F4oAvPfMk1IZrPX135V1lywpm8v5vI60d2wq-GpTz_81U6yBc3930q8J__3w0ajLk</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Arvelakis, S</creator><creator>Frandsen, F. J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>20070901</creationdate><title>Melting Behavior of Ashes from the Co-combustion of Coal and Straw</title><author>Arvelakis, S ; Frandsen, F. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-4bbf290b74f733b9249f31b7f9587f9ecc90703a5671fff89afc1ace96f772fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>09 BIOMASS FUELS</topic><topic>ADHESION</topic><topic>Applied sciences</topic><topic>ASHES</topic><topic>BOILERS</topic><topic>COAL</topic><topic>COCOMBUSTION</topic><topic>Combustion of heterogeneous mixtures. Incineration</topic><topic>Combustion. Flame</topic><topic>CRYSTALLIZATION</topic><topic>DEPOSITION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>MELTING</topic><topic>PULVERIZED FUELS</topic><topic>STRAW</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>VISCOSITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arvelakis, S</creatorcontrib><creatorcontrib>Frandsen, F. J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvelakis, S</au><au>Frandsen, F. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting Behavior of Ashes from the Co-combustion of Coal and Straw</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>21</volume><issue>5</issue><spage>3004</spage><epage>3009</epage><pages>3004-3009</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><coden>ENFUEM</coden><abstract>Straw may be used today as a substitute fuel to lower the greenhouse gas emissions from traditional coal-fired power plants and provide green-based electricity. It may also provide an alternative source of income to the local farmers helping the developed countries to support sustainable development. The use of straw as a co-firing feedstock in traditional coal-fired plants is associated with operational problems, such as deposition, agglomeration, and/or corrosion, mainly because of the higher amounts of alkali metals and chlorine in straw compared to coal. This may lead to unscheduled shutdowns and costly repairs, increasing the operational costs and the cost of the produced power. In this paper, the melting characteristics of several ash fractions sampled from different parts of a pilot-scale pulverized fuel (PF) boiler operating with different coal/straw mixtures is determined by measuring the ash viscosity using a high-temperature rotational viscometer. The produced data provide information on the melting of the ash material, its flow characteristics, and the rates of crystallization and recrystallization, as a function of the temperature. This information may be used to modify the temperature profile in the different parts of the boiler to reduce the deposition of the ash material. The results show that the straw in the co-combustion mixture changes the viscosity characteristics of the produced ash fractions. The viscosity of the different ash fractions is lowered, as the percentage of straw in the co-combustion mixture increases, and leads to higher stickiness of the produced ash particles at lower temperatures.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ef070045m</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2007-09, Vol.21 (5), p.3004-3009 |
issn | 0887-0624 1520-5029 |
language | eng |
recordid | cdi_osti_scitechconnect_20961454 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | 01 COAL, LIGNITE, AND PEAT 09 BIOMASS FUELS ADHESION Applied sciences ASHES BOILERS COAL COCOMBUSTION Combustion of heterogeneous mixtures. Incineration Combustion. Flame CRYSTALLIZATION DEPOSITION Energy Energy. Thermal use of fuels Exact sciences and technology MELTING PULVERIZED FUELS STRAW Theoretical studies. Data and constants. Metering VISCOSITY |
title | Melting Behavior of Ashes from the Co-combustion of Coal and Straw |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20Behavior%20of%20Ashes%20from%20the%20Co-combustion%20of%20Coal%20and%20Straw&rft.jtitle=Energy%20&%20fuels&rft.au=Arvelakis,%20S&rft.date=2007-09-01&rft.volume=21&rft.issue=5&rft.spage=3004&rft.epage=3009&rft.pages=3004-3009&rft.issn=0887-0624&rft.eissn=1520-5029&rft.coden=ENFUEM&rft_id=info:doi/10.1021/ef070045m&rft_dat=%3Cproquest_osti_%3E20094839%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a386t-4bbf290b74f733b9249f31b7f9587f9ecc90703a5671fff89afc1ace96f772fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20094839&rft_id=info:pmid/&rfr_iscdi=true |