Loading…
Deexcitation of high-Rydberg-state atoms with a chirped train of half-cycle pulses
Encouraged by the experiments on production of antihydrogen atoms in high Rydberg states we have calculated the effect of deexcitation towards lower states by a chirped train of identical unidirectional half-cycle pulses. The calculations exploit both the one-dimensional and impulse approximations p...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2007-05, Vol.75 (5), Article 055402 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Encouraged by the experiments on production of antihydrogen atoms in high Rydberg states we have calculated the effect of deexcitation towards lower states by a chirped train of identical unidirectional half-cycle pulses. The calculations exploit both the one-dimensional and impulse approximations providing convenient analytical formulas for the Rydberg-to-Rydberg transition amplitudes. The calculated deexcitation is shown in terms of the mean value of localization of the Rydberg wave packet in the coordinate space, the Rydberg-state population distribution, the Husimi phase-space distribution function, and the probability density distribution, each of these measures vs the length of the applied train of half-cycle pulses. The results for chirped trains are compared with those for periodic trains and examples of higher deexcitation efficiency of the chirped trains are given. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.75.055402 |