Loading…

Scanning tunneling microscopy observation of Pb-induced superstructures on Si(557)

Pb-induced superstructures on Si(557) are investigated by low-energy-electron diffraction (LEED) and scanning tunneling microscopy (STM). Using an indirect heating method, we have succeeded in obtaining almost perfect single-domain LEED patterns of one-dimensional wire (chain) structures, so called...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2007-10, Vol.76 (16), Article 165406
Main Authors: Morikawa, Harumo, Kim, Keun Su, Jung, Duk Yong, Yeom, Han Woong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pb-induced superstructures on Si(557) are investigated by low-energy-electron diffraction (LEED) and scanning tunneling microscopy (STM). Using an indirect heating method, we have succeeded in obtaining almost perfect single-domain LEED patterns of one-dimensional wire (chain) structures, so called {alpha}x2 and {beta}x2 phases. Careful LEED analysis and STM investigation reveal that these phases are formed on the (223) and (112) facets, respectively. The {alpha}x2 phase has regular bundles of triple wires at low annealing temperature but wider bundles through step bunching after a higher temperature annealing. Along the wires of the {alpha}x2 phase, which was recently reported to exhibit a transition between one-dimensional (1D) metallic and 2D semiconducting conductance, a clear commensurate x2 modulation is observed at 78-120 K in contrast to the incommensurate and disordered structure reported previously. A tentative atomic structure model of the {alpha}x2 phase is proposed based on the dense Pb overlayers on (111) and (223) facets. The details of the STM images of the {beta}x2 phase are discussed.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.76.165406