Loading…
Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity
We consider a steady-state heat conduction problem P
Saved in:
Published in: | Applied mathematics & optimization 2003-05, Vol.47 (3), p.213-230 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c298t-6d6655d493d77392da95b1f6296e3fc8b9aab25166bf5022b0ecb1715c5de5903 |
---|---|
cites | |
container_end_page | 230 |
container_issue | 3 |
container_start_page | 213 |
container_title | Applied mathematics & optimization |
container_volume | 47 |
creator | Gariboldi, Claudia M. Tarzia, Domingo A. |
description | We consider a steady-state heat conduction problem P |
doi_str_mv | 10.1007/s00245-003-0761-y |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21067474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>680917961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-6d6655d493d77392da95b1f6296e3fc8b9aab25166bf5022b0ecb1715c5de5903</originalsourceid><addsrcrecordid>eNotkctuHCEQRVFkSxk_PiA7FK_bKaChzTIajx-SI2dhr1E3XWSw2jAGxkl_hv84TDqrWtQ5V6q6hHxhcMkAum8ZgLeyARANdIo18yeyYq3gDShQR2QFoGXTKqY-k5OcX6DiQokV-VjH8I7pFwaLNDp67XNJftgXHOnjrvjXfqIVKSlOmcZAyxbpfSiYQl1sQjVn6gP94f9UYTNNvjqW_kxxmPA1099bXJw77At9Sn3IDlNNROe89RgKvY2YaYk11fngy3xGjl0_ZTz_P0_J883maX3XPDze3q-_PzSW66vSqFEpKcdWi7HrhOZjr-XAnOJaoXD2atB9P3DJlBqcBM4HQDuwjkkrR5QaxCm5WHJjLt5k6wvarY0hoC2GM1Bd27WV-rpQuxTf9piLeYn7w_HZMN0qpcQ_iC2QTTHnhM7sUv1cmg0Dc6jHLPWYWo851GNm8RdcAIQx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194666374</pqid></control><display><type>article</type><title>Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Gariboldi, Claudia M. ; Tarzia, Domingo A.</creator><creatorcontrib>Gariboldi, Claudia M. ; Tarzia, Domingo A.</creatorcontrib><description><![CDATA[We consider a steady-state heat conduction problem P<<[alpha]<< with mixed boundary conditions for the Poisson equation depending on a positive parameter <[alpha]< , which represents the heat transfer coefficient on a portion <[Gamma] <<<1<< of the boundary of a given bounded domain in < R<<<n<< . We formulate distributed optimal control problems over the internal energy <g< for each <[alpha]< . We prove that the optimal control < g_ op<<<[alpha] <<< < and its corresponding system <u_ g_ op<<<[alpha] <<< [alpha] < and adjoint <p_ g_ op<<<[alpha] <<< [alpha] < states for each <[alpha] < are strongly convergent to <g<<<op<<<,< <u_ g<<<op<<< < and < p _ g<<<op<<< < , respectively, in adequate functional spaces. We also prove that these limit functions are respectively the optimal control, and the system and adjoint states corresponding to another distributed optimal control problem for the same Poisson equation with a different boundary condition on the portion <[Gamma]<<<1<< . We use the fixed point and elliptic variational inequality theories.]]></description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-003-0761-y</identifier><identifier>CODEN: AMOMBN</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>BOUNDARY CONDITIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVERGENCE ; Energy ; FUNCTIONS ; Heat transfer ; Inequality ; MATHEMATICAL SPACE ; OPTIMAL CONTROL ; POISSON EQUATION ; STEADY-STATE CONDITIONS ; THERMAL CONDUCTION ; VARIATIONAL METHODS</subject><ispartof>Applied mathematics & optimization, 2003-05, Vol.47 (3), p.213-230</ispartof><rights>Copyright Springer-Verlag New York, Inc. May 21, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-6d6655d493d77392da95b1f6296e3fc8b9aab25166bf5022b0ecb1715c5de5903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/194666374/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/194666374?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21067474$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gariboldi, Claudia M.</creatorcontrib><creatorcontrib>Tarzia, Domingo A.</creatorcontrib><title>Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity</title><title>Applied mathematics & optimization</title><description><![CDATA[We consider a steady-state heat conduction problem P<<[alpha]<< with mixed boundary conditions for the Poisson equation depending on a positive parameter <[alpha]< , which represents the heat transfer coefficient on a portion <[Gamma] <<<1<< of the boundary of a given bounded domain in < R<<<n<< . We formulate distributed optimal control problems over the internal energy <g< for each <[alpha]< . We prove that the optimal control < g_ op<<<[alpha] <<< < and its corresponding system <u_ g_ op<<<[alpha] <<< [alpha] < and adjoint <p_ g_ op<<<[alpha] <<< [alpha] < states for each <[alpha] < are strongly convergent to <g<<<op<<<,< <u_ g<<<op<<< < and < p _ g<<<op<<< < , respectively, in adequate functional spaces. We also prove that these limit functions are respectively the optimal control, and the system and adjoint states corresponding to another distributed optimal control problem for the same Poisson equation with a different boundary condition on the portion <[Gamma]<<<1<< . We use the fixed point and elliptic variational inequality theories.]]></description><subject>BOUNDARY CONDITIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVERGENCE</subject><subject>Energy</subject><subject>FUNCTIONS</subject><subject>Heat transfer</subject><subject>Inequality</subject><subject>MATHEMATICAL SPACE</subject><subject>OPTIMAL CONTROL</subject><subject>POISSON EQUATION</subject><subject>STEADY-STATE CONDITIONS</subject><subject>THERMAL CONDUCTION</subject><subject>VARIATIONAL METHODS</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkctuHCEQRVFkSxk_PiA7FK_bKaChzTIajx-SI2dhr1E3XWSw2jAGxkl_hv84TDqrWtQ5V6q6hHxhcMkAum8ZgLeyARANdIo18yeyYq3gDShQR2QFoGXTKqY-k5OcX6DiQokV-VjH8I7pFwaLNDp67XNJftgXHOnjrvjXfqIVKSlOmcZAyxbpfSiYQl1sQjVn6gP94f9UYTNNvjqW_kxxmPA1099bXJw77At9Sn3IDlNNROe89RgKvY2YaYk11fngy3xGjl0_ZTz_P0_J883maX3XPDze3q-_PzSW66vSqFEpKcdWi7HrhOZjr-XAnOJaoXD2atB9P3DJlBqcBM4HQDuwjkkrR5QaxCm5WHJjLt5k6wvarY0hoC2GM1Bd27WV-rpQuxTf9piLeYn7w_HZMN0qpcQ_iC2QTTHnhM7sUv1cmg0Dc6jHLPWYWo851GNm8RdcAIQx</recordid><startdate>20030521</startdate><enddate>20030521</enddate><creator>Gariboldi, Claudia M.</creator><creator>Tarzia, Domingo A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20030521</creationdate><title>Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity</title><author>Gariboldi, Claudia M. ; Tarzia, Domingo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-6d6655d493d77392da95b1f6296e3fc8b9aab25166bf5022b0ecb1715c5de5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>BOUNDARY CONDITIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVERGENCE</topic><topic>Energy</topic><topic>FUNCTIONS</topic><topic>Heat transfer</topic><topic>Inequality</topic><topic>MATHEMATICAL SPACE</topic><topic>OPTIMAL CONTROL</topic><topic>POISSON EQUATION</topic><topic>STEADY-STATE CONDITIONS</topic><topic>THERMAL CONDUCTION</topic><topic>VARIATIONAL METHODS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gariboldi, Claudia M.</creatorcontrib><creatorcontrib>Tarzia, Domingo A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gariboldi, Claudia M.</au><au>Tarzia, Domingo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity</atitle><jtitle>Applied mathematics & optimization</jtitle><date>2003-05-21</date><risdate>2003</risdate><volume>47</volume><issue>3</issue><spage>213</spage><epage>230</epage><pages>213-230</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><coden>AMOMBN</coden><abstract><![CDATA[We consider a steady-state heat conduction problem P<<[alpha]<< with mixed boundary conditions for the Poisson equation depending on a positive parameter <[alpha]< , which represents the heat transfer coefficient on a portion <[Gamma] <<<1<< of the boundary of a given bounded domain in < R<<<n<< . We formulate distributed optimal control problems over the internal energy <g< for each <[alpha]< . We prove that the optimal control < g_ op<<<[alpha] <<< < and its corresponding system <u_ g_ op<<<[alpha] <<< [alpha] < and adjoint <p_ g_ op<<<[alpha] <<< [alpha] < states for each <[alpha] < are strongly convergent to <g<<<op<<<,< <u_ g<<<op<<< < and < p _ g<<<op<<< < , respectively, in adequate functional spaces. We also prove that these limit functions are respectively the optimal control, and the system and adjoint states corresponding to another distributed optimal control problem for the same Poisson equation with a different boundary condition on the portion <[Gamma]<<<1<< . We use the fixed point and elliptic variational inequality theories.]]></abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00245-003-0761-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2003-05, Vol.47 (3), p.213-230 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_osti_scitechconnect_21067474 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global (ProQuest); Springer Nature |
subjects | BOUNDARY CONDITIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONVERGENCE Energy FUNCTIONS Heat transfer Inequality MATHEMATICAL SPACE OPTIMAL CONTROL POISSON EQUATION STEADY-STATE CONDITIONS THERMAL CONDUCTION VARIATIONAL METHODS |
title | Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20Distributed%20Optimal%20Controls%20on%20the%20Internal%20Energy%20in%20Mixed%20Elliptic%20Problems%20when%20the%20Heat%20Transfer%20Coefficient%20Goes%20to%20Infinity&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Gariboldi,%20Claudia%20M.&rft.date=2003-05-21&rft.volume=47&rft.issue=3&rft.spage=213&rft.epage=230&rft.pages=213-230&rft.issn=0095-4616&rft.eissn=1432-0606&rft.coden=AMOMBN&rft_id=info:doi/10.1007/s00245-003-0761-y&rft_dat=%3Cproquest_osti_%3E680917961%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-6d6655d493d77392da95b1f6296e3fc8b9aab25166bf5022b0ecb1715c5de5903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194666374&rft_id=info:pmid/&rfr_iscdi=true |