Loading…

LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co

The response of LiF:Mg,Ti thermoluminescent dosimeters (TLDs) as a function of photon energy was determined using irradiations with moderately filtered x-ray beams in the energy range of 20-250 kVp relative to the response to irradiations with {sup 60}Co photons. To determine if the relative light o...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2008-05, Vol.35 (5)
Main Authors: Nunn, A. A., Davis, S. D., Micka, J. A., DeWerd, L. A., Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53706
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The response of LiF:Mg,Ti thermoluminescent dosimeters (TLDs) as a function of photon energy was determined using irradiations with moderately filtered x-ray beams in the energy range of 20-250 kVp relative to the response to irradiations with {sup 60}Co photons. To determine if the relative light output from LiF:Mg,Ti TLDs per unit air kerma as a function of photon energy can be predicted using calculations such as Monte Carlo (MC) simulations, measurements from the x-ray beam irradiations were compared with MC calculated results, similar to the methodology used by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. TLDs were irradiated in photon beams with well-known air kerma rates using the National Institute of Standards and Technology traceable M-series x-ray beams in the range of 20-250 kVp. For each x-ray beam, several sets of TLDs were irradiated for times corresponding to different air kerma levels to take into account any dose nonlinearity. TLD light output was then compared to that from several sets of TLDs irradiated at similar corresponding air kerma levels using a {sup 60}Co irradiator. The MC code MCNP5 was used to account for photon scatter and attenuation in the holder and TLDs and was used to calculate the predicted relative TLD light output per unit air kerma for irradiations with each of the experimentally used photon beams. The measured relative TLD response as a function of photon energy differed by up to 13% from the MC calculations. We conclude that MC calculations do not accurately predict the relative response of TLDs as a function of photon energy, consistent with the conclusions of Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. This is likely due to complications in the solid state physics of the thermoluminescence process that are not incorporated into the simulation.
ISSN:0094-2405
2473-4209
DOI:10.1118/1.2898137