Loading…
Studies of plastic-ablator compressibility for direct-drive inertial confinement fusion on OMEGA
The compression of planar plastic targets was studied with x-ray radiography in the range of laser intensities of I approximately 0.5 to 1.5x10(15) W/cm2 using square (low-compression) and shaped (high-compression) pulses. Two-dimensional simulations with the radiative hydrocode DRACO show good agre...
Saved in:
Published in: | Physical review letters 2008-05, Vol.100 (18), p.185003-185003, Article 185003 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The compression of planar plastic targets was studied with x-ray radiography in the range of laser intensities of I approximately 0.5 to 1.5x10(15) W/cm2 using square (low-compression) and shaped (high-compression) pulses. Two-dimensional simulations with the radiative hydrocode DRACO show good agreement with measurements at laser intensities up to I approximately 10(15) W/cm2. These results provide the first experimental evidence for low-entropy, adiabatic compression of plastic shells in the laser intensity regime relevant to direct-drive inertial confinement fusion. A density reduction near the end of the drive at a high intensity of I approximately 1.5x10(15) W/cm2 has been correlated with the hard x-ray signal caused by hot electrons from two-plasmon-decay instability. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.100.185003 |