Loading…
Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys
We report a melt spinning technique followed by a quick spark plasma sintering procedure to fabricate high-performance p-type Bi0.52Sb1.48Te3 bulk material with unique microstructures. The microstructures consist of nanocrystalline domains embedded in amorphous matrix and 5–15 nm nanocrystals with c...
Saved in:
Published in: | Applied physics letters 2009-03, Vol.94 (10) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a melt spinning technique followed by a quick spark plasma sintering procedure to fabricate high-performance p-type Bi0.52Sb1.48Te3 bulk material with unique microstructures. The microstructures consist of nanocrystalline domains embedded in amorphous matrix and 5–15 nm nanocrystals with coherent grain boundary. The significantly reduced thermal conductivity leads to a state-of-the-art dimensionless figure of merit ZT∼1.56 at 300 K, more than 50% improvement of that of the commercial Bi2Te3 ingot materials. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3097026 |