Loading…

Contact of a free boundary with a fixed boundary

For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown t...

Full description

Saved in:
Bibliographic Details
Published in:Sbornik. Mathematics 2000-02, Vol.191 (2)
Main Author: Ural'tseva, N N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page
container_title Sbornik. Mathematics
container_volume 191
creator Ural'tseva, N N
description For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with.
doi_str_mv 10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21202914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21202914</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_212029143</originalsourceid><addsrcrecordid>eNqNjMFLwzAchYMobM79DwEveqj7JUu7Tk8xZFvApVKzQU-jZimrSANLhvrfW0E8e3rf-3g8hAyBOwIzmLysKQBsyZxooPxRrvrG0tmDKDbalFWxUPp5Y-6VNrLU3KhC8yduirUSUstyWfGl1KK6UVzy2zM0JCzLE5YDPe8ZMpakGckG6DKEt_44pSQfIhC-i7WN2De4xs3ROfzqT92-Pn7hjzYefmT76fZ_9gpdNPV7cOPfHKHrhTRilfgQ212wbXT2YH3XORt3lFCgc8Km_1t9A2B4So4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contact of a free boundary with a fixed boundary</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ural'tseva, N N</creator><creatorcontrib>Ural'tseva, N N</creatorcontrib><description>For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</identifier><language>eng</language><publisher>United States</publisher><subject>BOUNDARY CONDITIONS ; BOUNDARY-VALUE PROBLEMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; MATHEMATICAL LOGIC</subject><ispartof>Sbornik. Mathematics, 2000-02, Vol.191 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21202914$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ural'tseva, N N</creatorcontrib><title>Contact of a free boundary with a fixed boundary</title><title>Sbornik. Mathematics</title><description>For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with.</description><subject>BOUNDARY CONDITIONS</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>MATHEMATICAL LOGIC</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNjMFLwzAchYMobM79DwEveqj7JUu7Tk8xZFvApVKzQU-jZimrSANLhvrfW0E8e3rf-3g8hAyBOwIzmLysKQBsyZxooPxRrvrG0tmDKDbalFWxUPp5Y-6VNrLU3KhC8yduirUSUstyWfGl1KK6UVzy2zM0JCzLE5YDPe8ZMpakGckG6DKEt_44pSQfIhC-i7WN2De4xs3ROfzqT92-Pn7hjzYefmT76fZ_9gpdNPV7cOPfHKHrhTRilfgQ212wbXT2YH3XORt3lFCgc8Km_1t9A2B4So4</recordid><startdate>20000228</startdate><enddate>20000228</enddate><creator>Ural'tseva, N N</creator><scope>OTOTI</scope></search><sort><creationdate>20000228</creationdate><title>Contact of a free boundary with a fixed boundary</title><author>Ural'tseva, N N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_212029143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>BOUNDARY CONDITIONS</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>MATHEMATICAL LOGIC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ural'tseva, N N</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ural'tseva, N N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact of a free boundary with a fixed boundary</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2000-02-28</date><risdate>2000</risdate><volume>191</volume><issue>2</issue><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with.</abstract><cop>United States</cop><doi>10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2000-02, Vol.191 (2)
issn 1064-5616
1468-4802
language eng
recordid cdi_osti_scitechconnect_21202914
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects BOUNDARY CONDITIONS
BOUNDARY-VALUE PROBLEMS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
MATHEMATICAL LOGIC
title Contact of a free boundary with a fixed boundary
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact%20of%20a%20free%20boundary%20with%20a%20fixed%20boundary&rft.jtitle=Sbornik.%20Mathematics&rft.au=Ural'tseva,%20N%20N&rft.date=2000-02-28&rft.volume=191&rft.issue=2&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)&rft_dat=%3Costi%3E21202914%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_212029143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true