Loading…
Contact of a free boundary with a fixed boundary
For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown t...
Saved in:
Published in: | Sbornik. Mathematics 2000-02, Vol.191 (2) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Sbornik. Mathematics |
container_volume | 191 |
creator | Ural'tseva, N N |
description | For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with. |
doi_str_mv | 10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA) |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21202914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21202914</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_212029143</originalsourceid><addsrcrecordid>eNqNjMFLwzAchYMobM79DwEveqj7JUu7Tk8xZFvApVKzQU-jZimrSANLhvrfW0E8e3rf-3g8hAyBOwIzmLysKQBsyZxooPxRrvrG0tmDKDbalFWxUPp5Y-6VNrLU3KhC8yduirUSUstyWfGl1KK6UVzy2zM0JCzLE5YDPe8ZMpakGckG6DKEt_44pSQfIhC-i7WN2De4xs3ROfzqT92-Pn7hjzYefmT76fZ_9gpdNPV7cOPfHKHrhTRilfgQ212wbXT2YH3XORt3lFCgc8Km_1t9A2B4So4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contact of a free boundary with a fixed boundary</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ural'tseva, N N</creator><creatorcontrib>Ural'tseva, N N</creatorcontrib><description>For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</identifier><language>eng</language><publisher>United States</publisher><subject>BOUNDARY CONDITIONS ; BOUNDARY-VALUE PROBLEMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; MATHEMATICAL LOGIC</subject><ispartof>Sbornik. Mathematics, 2000-02, Vol.191 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21202914$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ural'tseva, N N</creatorcontrib><title>Contact of a free boundary with a fixed boundary</title><title>Sbornik. Mathematics</title><description>For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with.</description><subject>BOUNDARY CONDITIONS</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>MATHEMATICAL LOGIC</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNjMFLwzAchYMobM79DwEveqj7JUu7Tk8xZFvApVKzQU-jZimrSANLhvrfW0E8e3rf-3g8hAyBOwIzmLysKQBsyZxooPxRrvrG0tmDKDbalFWxUPp5Y-6VNrLU3KhC8yduirUSUstyWfGl1KK6UVzy2zM0JCzLE5YDPe8ZMpakGckG6DKEt_44pSQfIhC-i7WN2De4xs3ROfzqT92-Pn7hjzYefmT76fZ_9gpdNPV7cOPfHKHrhTRilfgQ212wbXT2YH3XORt3lFCgc8Km_1t9A2B4So4</recordid><startdate>20000228</startdate><enddate>20000228</enddate><creator>Ural'tseva, N N</creator><scope>OTOTI</scope></search><sort><creationdate>20000228</creationdate><title>Contact of a free boundary with a fixed boundary</title><author>Ural'tseva, N N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_212029143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>BOUNDARY CONDITIONS</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>MATHEMATICAL LOGIC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ural'tseva, N N</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ural'tseva, N N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact of a free boundary with a fixed boundary</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2000-02-28</date><risdate>2000</risdate><volume>191</volume><issue>2</issue><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>For a simple elliptic obstacle problem the behaviour of the free boundary is studied near its points of contact with the fixed boundary of the domain. An earlier result of the author on the C{sup 1}-regularity of the boundary {partial_derivative}N of the non-coincidence set is refined. It is shown that the previously imposed Lipschitz condition on {partial_derivative}N can be dispensed with.</abstract><cop>United States</cop><doi>10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2000-02, Vol.191 (2) |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_osti_scitechconnect_21202914 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | BOUNDARY CONDITIONS BOUNDARY-VALUE PROBLEMS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS MATHEMATICAL LOGIC |
title | Contact of a free boundary with a fixed boundary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact%20of%20a%20free%20boundary%20with%20a%20fixed%20boundary&rft.jtitle=Sbornik.%20Mathematics&rft.au=Ural'tseva,%20N%20N&rft.date=2000-02-28&rft.volume=191&rft.issue=2&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2000V191N02ABEH000457;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)&rft_dat=%3Costi%3E21202914%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_212029143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |